META-ANALYSIS OF THE RECURRENCE AND SURVIVAL RATE REGARDING THE DISTAL RESECTION MARGIN LENGTH IN RECTAL CANCER SURGERY

Aryanti C¹, Mulyawan IM², and Mahayasa IM².

¹Department of Surgery, Udayana University, Sanglah General Hospital, Denpasar, 80113 Bali, Indonesia ²Division of Digestive Surgery, Department of Surgery, Udayana University, Sanglah General Hospital, Denpasar, 80113 Bali, Indonesia

Correspondence:

Citra Aryanti, Department of Surgery, Faculty of Medicine, Udayana University, Sanglah General Hospital, Denpasar, 80113 Bali, Indonesia Email: citra.aryanti@hotmail.com

Abstract

Background: The optimal distal resection margin (DRM) in rectal cancer surgery required to achieve an adequate oncological outcome remains controversial. The changing trends of the study results showed favorable outcomes of patients receiving as minimal a margin as possible. Therefore, this study aimed to perform a meta-analysis of the recurrence and survival rate regarding the DRM in rectal cancer surgery.

Methods: The study design followed the PRISMA guidelines. The journal was traced and then analyzed with parameters of local recurrence, distant recurrence, disease-free survival, and overall survival rate. Data was analyzed by Review Manager 5.3.

Results: There was a total of 48 studies included in this meta-analysis. There was no difference in recurrence rate by taking 1 cm as the cut-off point for DRM. However, limiting the studies to those measured DRM in a fresh specimen, the local recurrence rate was significantly higher in the group with DRM less than 1 cm to more than 1 cm (OR 1.92; 95%CI 1.21-3.06; p=0.006; I² 35%). The recurrence rate was significantly higher in the group with DRM less than 5 mm than the group with DRM more than 5 mm (OR 1.52; 95%CI 1.05-2.29; p=0.03; I² 34%).

Conclusion: This meta-analysis showed that taking 5 mm as a cut-off point was optimal to control the local recurrence rate in rectal cancer. The difference between distant recurrence and survival rate could not be determined due to a lack of data from previous studies.

Keywords: Rectal Cancer, Distal Margin, Safe Margin, Recurrence Survival

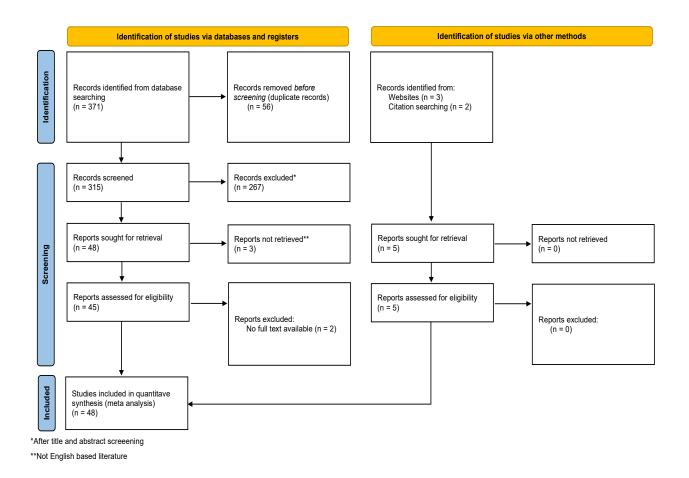
Introduction

Rectal cancer is one of the commonly found cancers worldwide (1). The recurrence and survival rate were the main therapeutic goals (2, 3). The introduction of total mesorectal excision, as long as with the presurgical chemotherapy, has allowed the local disease control and increased quality of life (4). Despite these advances, the resection margin status was one of the most important parameters in the prognosis (5).

The goal of achieving safe margins was always challenging, associated with its controversies, clinical judgment, and patient personalization (6). The DRM required to achieve an adequate oncological outcome remains controversial. Changing trends of the study results showing favorable outcomes of patients who received less than 1 cm distal resection margin (DRM) encouraged surgeons to operate with reduced DRM (7). Previously, the standard 5 cm margin was reduced to 2 cm and later with advances in surgical techniques to 2 cm rule or even less (8). From 1983 to 2007, the recommended DRM for rectal cancer has been reduced due to the findings of the rate of microscopic distal spread from studies. William et al. (1983) (9) recommended 5 cm, Shirouzu et al. (1995) (10) recommended 1 cm, Ono et al. (2002) (11) recommended 3 cm, Wang et al. (2006) (12) recommended 4 cm, and Guillem et al. (2007) (7) recommended 1 cm. The Current National Comprehensive Cancer Network guidelines recommended 4–5 cm DRM for partial mesorectal excision and 1-2 cm for total mesorectal excision (TME) (13).

Regardless of many studies have been done, the DRM was still inconclusive. Some even recommended as minimal as one millimetre due to its favorable results. Besides that, those studies were mostly retrospective, lack of length measurement standard, combining all subjects with various tumor sizes and histopathology features. Therefore, the purpose of this study was to perform a meta-analysis regarding the recurrence and survival rate of rectal cancer regarding the distal resection margin's length in rectal cancer surgery.

Materials and Methods


This meta-analysis was performed based on the guidance of the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement and the Cochrane Handbook for Systematic Reviews of Interventions (Figure 1). All pooled analyses were based on published studies and thus did not require ethical approval and patient consent.

Literature search

Electronic databases were searched for studies published up until June 2021, including Medline, Embase, Web of Science, and Pubmed. The studies included and relevant reviews were also manually searched to include any relevant articles. The references of included studies were also analyzed for further investigation.

Selection criteria

Selection criteria were done based on the PICOS acronym (Population, intervention, comparator, outcomes, and study design), the author defined the inclusion criteria as below: Population (P): all patients that were diagnosed with rectal cancer based on histopathology examination. Intervention (I) and comparator (C): comparing the DRM and circumferential resection margin (CRM) with various cut off point. Outcomes (O): the following measured outcomes were included: local recurrence rate, distant

Figure 1: PRISMA flowchart of this study

recurrence rate, disease-free survival, five-year survival, and overall survival.

Data extraction

Relevant studies were limited to the studies published in the last 20 years. Two authors extracted the following information independently by using a predesigned table. Duplicate journal was managed by EndNote. There was a total of 320 records from literature searches based on the keywords applied. After screening the title and abstract, the authors included 53 studies that were relevant to the aim of this study. Three studies were excluded to not Englishbased literatures. Then, only 48 studies were included in the quantitative synthesis due to no full -text available in the other two studies.

Any divergence or disagreements between authors was resolved by consulting a third author. The data collected in this meta-analysis were author, year, country, duration of follow up, included rectal tumor based on the distance from the anal verge, measured pathology specimen, the stage, number of cases, and total cases analyzed. For the lower rectal cancer, abdominoperineal resection or Miles procedure was carried out. For the middle rectal cancer, ultra-low anterior resection was done. For the upper rectal cancer, anterior resection was done.

Data analysis

All extracted data were entered into RevMan 5.3 (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2012) for statistical analysis. Studies with proportion will be analyzed by dichotomous analysis using random-effects model based on Mantel-Haenszel statistical approach was selected to combine the data. A significant p of 0.05 was taken as the standard.

Results

The local recurrence rate of the group with DRM more and less than 1 cm

There was a total of 23 studies that included in the metaanalysis of local recurrence rate between the group with DRM less than 1 cm and that with DRM more than 1 cm. The years of study ranged from 1992 to 2021. Duration of follow up ranged from 33-192 months. The total subjects from overall studies were 12,155 subjects. Most studies (60.9%) measured the DRM in fresh specimens. The most discrepancies in the included studies were that some only included the lower rectal cancer, while others included all regardless of the distance from the anal verge. Moreover, in some studies, authors used 6 cm as the cut-off point for lower to middle rectal cancer and middle to upper rectal cancer. One study used 7 cm, bust mostly used 5 cm. Only 1 study that subclassified again the recurrence rate based on the distance from anal verge. Besides that, not all subjects received neoadjuvant chemoradiation (NACRT). NACRT was given mainly to the subject's stage III-IV (Table 1) (8, 14-43).

This meta-analysis showed that the local recurrence rate was higher in the group who had DRM less than 1 cm compared to the group with DRM more than 1 cm (OR 1.34; 95%Cl 0.95-1.89), but it was not statistically significant (p=0.10; l² 51%; Figure 2). Then, authors were limited to three studies with only lower rectal cancer, wherein the local recurrence rate was also not significantly different (OR 1.69; 95%Cl 0.62-4.59; p=0.31; l² 0%). However, when the studies analyzed were only those which measured DRM in the fresh specimen (excluding fixed specimen), the local recurrence rate was significantly higher in the group with

DRM less than 1 cm to the group with DRM more than 1 cm (OR 1.92; 95%Cl 1.21-3.06; p=0.006; l² 35%).

The local recurrence rate of the group with DRM more and less than 5 mm

There was a total of 11 studies that included in the metaanalysis of local recurrence rate between the group with DRM less than 5 mm and that with DRM more than 5 mm (Table 2). This meta-analysis showed that the local recurrence rate was significantly higher in the group who had DRM less than 5 mm compared to the group with DRM more than 5 mm (OR 1.52; 95%CI 1.05-2.29; p=0.03; I² 34%; Figure 3). The same significant result is also shown in the study that take fresh specimen only (OR 2.63; 95%CI 1.54-4.50; p=0.0004; I² 0%). However, the meta-analysis of only three studies taking tumors limited to lower rectal cancer showed no significant difference (OR 1.54; 95%CI 0.76-3.12; p=0.23; I² 0%) (14, 16, 21, 24, 32-36).

The local recurrence rate of the group with DRM more and less than 2 cm

There was a total of 6 studies included in the meta-analysis of local recurrence rate between the group with DRM less than 2 cm and that with DRM more than 2 cm (Table 3). This meta-analysis showed that the local recurrence rate was significantly higher in the group who had DRM less than 2 cm compared to the group with DRM more than 2 cm (OR 2.24; 95%Cl 1.01-4.93; p=0.05; I² 80%; Figure 4). Furthermore, the significant results were also shown if the meta-analysis was done only in studies with fresh specimen (OR 2.66; 95%Cl 0.99-7.11; p=0.05; I² 84%) (8, 15, 17, 29, 38, 39).

The local recurrence rate of the group with various cut off point of CRM

A total of 5 studies was included in the meta-analysis of the local recurrence rate of the group with various circumferential resection margin (CRM) cut-off points (Table 4). This meta-analysis showed that the local recurrence rate was significantly higher in the less CRM, either by using the cut-off point of 1 cm (OR 3.01; 95%CI 1.77-5.11; p=0.0001; I² 20%); 5 mm (OR 4.15; 95%CI 2.69-6.41; p<0.00001; I² 0%); 2 mm (OR 2.17; 95%CI 1.67-4.40; p<0.0001; I² 0); or 1 mm (OR 3.51; 95%CI 2.30-5.35; p<0.00001; I² 55%; Figure 5) (29, 39-42).

The distant recurrence rate of the group with various cut off point of DRM

A total of 6 studies was included in the meta-analysis regarding distant recurrence rates with various DRM cutoff points (Table 5). This meta-analysis showed that no significant difference in distant recurrence rate with the cut-off point of 1 cm (Figure 6). However, meta-analysis was not carried out by the cut-off point of 2 cm and 5 mm because only 1 study fulfilled the criteria (15, 16, 18, 21, 28, 29).

Author Duration of Distance from Measured Country Stage DRM <1 cm DRM >1 cm follow up the anal verge pathology (months) specimen Total Total n n Andreola et al. 51 3 5 cm Fixed All 4 35 41 Italy 2001 (14) Bernstein et al. 60 15 cm (94.6% Fixed |-||| Norway 76 519 243 2823 2012(15) mid-upper; 5.4% lower) Bhamre et al. India 62 10 cm (55.4% Fixed 3 201 All 1 41 mid; 44.6% 2019 (16) 108 lower) Bokey et al. 1999 60 15 cm (Lower Australia Fresh All 9 39 50 557 31.5%; Mid (17)29.9%; Upper 38.6%) Han et al. 2013 60 15 cm (Mean Т3 8 129 17 198 Korea Fixed (18) 7.8 cm) Hong et al. 2014 Korea 37 12 cm (Mean Fresh All 1 81 4 137 (19) 7.2 cm) 25 Huh et al. 2008 56 6 cm (Median 3 18 0 Korea Fixed All (20)cm) Kang et al. 2016 60 9 Korea NA Fixed All 132 18 283 (21) Karanjia et al. UK 60 10 cm (Mean Fixed All 0 42 4 110 1990 (22) 7.1 cm) Kim et al. 2009 Korea 65 15 cm (Mean Fixed All 7 163 28 744 (23) 7.2 cm) Kim et al. 2014 Korea 192 10 cm (Mean Fixed All 203 2208 34 368 (24)5 cm) Kiran et al. 2011 USA 49 10 cm (Mean Fixed All 7 784 19 586 (25) 7 cm) Kuvshinoff et al. 8 cm (Median USA 33 Fixed All 6 16 1 12 2001 (26) 4.4 cm) Law et al. 2002 35 8 cm (Median All 6 60 6 207 Hong Kong Fresh (27) 6 cm) Leo et al. 2009 92 7 6 Italy 5 cm Fresh All 94 84 (28) Lim et al. 2012 Singapore 45 12 cm Fixed |-||| 12 148 9 172 (29) Manegold et al. Germany 96 12 cm Fixed ||-||| 2 33 3 55 2019 (30) (Mid 64.8%; Lower 35.2%) Moore et al. 2003 USA 118 15 cm 2 17 7 77 Fresh All (Mean 6 cm) (8)Piccolo et al. 2010 USA 109 10 cm (Mean 0 10 0 Fixed All 40 (31) 6 cm) Rutkowski et al. 10 cm (Mean Poland 69 Fresh All 5 42 19 124 2008 (32) 6 cm) Silberfein et al. USA 94 5 cm (Median Fresh All 3 37 6 82 2010 (33) 2 cm) Stocchi et al. 2001 USA 60 12 cm Fresh All 13 54 29 298 (34)Vernava et al. USA 42 10 cm (Median Fresh All 6 20 22 219

8 cm)

Table 1: The data of the studies regarding the local recurrence rate of the group with DRM more and less than 1 cm

1992 (35)

	<1 ci	m	>1 ci	m		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Anderola et al. 2001	4	35	3	41	3.4%	1.63 [0.34, 7.86]	
Bernstein et al. 2009	0	519	0	2823		Not estimable	
Bhamre et al. 2019	1	41	3	201	1.9%	1.65 [0.17, 16.27]	
Bokey et al. 1999	9	39	50	557	7.1%	3.04 [1.37, 6.77]	
Han et al. 2013	8	129	17	198	6.6%	0.70 [0.29, 1.68]	
Hong et al. 2014	1	81	4	137	2.0%	0.42 [0.05, 3.78]	
Huh et al. 2008	3	18	0	25	1.2%	11.52 [0.56, 238.28]	
Kang et al. 2016	9	132	18	283	6.9%	1.08 [0.47, 2.47]	
Karanjia et al. 1990	0	42	4	110	1.2%	0.28 [0.01, 5.28]	
Kim et al. 2009	7	163	28	744	6.8%	1.15 [0.49, 2.67]	
Kim et al. 2014	203	2208	34	368	10.0%	0.99 [0.68, 1.46]	-+-
Kiran et al. 2011	7	784	19	586	6.6%	0.27 [0.11, 0.64]	
Kuvshinoff et al. 2001	6	16	1	12	1.9%	6.60 [0.67, 64.76]	
Law et al. 2002	6	60	6	207	4.9%	3.72 [1.15, 12.00]	
Leo et al. 2009	7	94	6	84	5.1%	1.05 [0.34, 3.25]	
Lim et al. 2012	12	148	9	172	6.4%	1.60 [0.65, 3.91]	
Manegold et al. 2019	2	33	3	55	2.7%	1.12 [0.18, 7.07]	
Moore et al. 2003	2	17	7	77	3.1%	1.33 [0.25, 7.07]	
Pricolo et al. 2010	0	10	0	40		Not estimable	
Rutkowski et al. 2008	5	42	19	124	5.5%	0.75 [0.26, 2.14]	
Silberfein et al. 2010	3	37	6	82	3.8%	1.12 [0.26, 4.73]	
Stocchi et al. 2001	13	54	29	298	7.5%	2.94 [1.41, 6.12]	
Vernava et al. 1992	6	20	22	219	5.5%	3.84 [1.34, 11.00]	
Total (95% CI)		4722		7443	100.0%	1.34 [0.95, 1.89]	•
Total events	314		288				
Heterogeneity: Tau ² = 0	.27; Chi ² ∍	= 40.66	, df = 20	(P = 0.0	004); I ² = 6	51%	
Test for overall effect: Z	•		•	•			
	···- • •	,					Favours [experimental] Favours [control]

Figure 2: Forest plot of the local recurrence rate of the group with DRM more and less than 1 cm (8, 14-43)

Author	Country	Duration of	Distance from	Measured	Stage	DRM	<5 mm	DRM >5 mm	
		follow up (months)	the anal verge	pathology specimen		n	Total	n	Total
Andreola et al. 2001 (14)	Italy	51	5 cm	Fixed	All	4	24	3	49
Bhamre et al. 2019 (16)	India	62	10 cm (55.4% mid; 44.6% 108 lower)	Fixed	All	0	16	4	226
Kang et al. 2016 (21)	Korea	60	NA	Fixed	All	3	45	24	370
Kim et al. 2014 (24)	Korea	192	10 cm (Mean 5 cm)	Fixed	All	169	1840	68	736
Kiran et al. 2011 (25)	USA	49	10 cm (Mean 7 cm)	Fixed	All	4	77	22	706
Kuvshinoff et al. 2001 (26)	USA	33	8 cm (Median 4.4 cm)	Fixed	All	1	9	0	19
Kwak et al. 2012 (36)	Korea	138	5 cm (Mean 2.6 cm)	Fixed	1-111	6	61	23	315
Rutkowski et al. 2008 (32)	Poland	69	10 cm (Mean 6 cm)	Fresh	All	5	42	19	124
Silberfein et al. 2010 (33)	USA	94	5 cm (Median 2 cm)	Fresh	All	3	37	6	82
Stocchi et al. 2001 (34)	USA	60	12 cm	Fresh	All	29	167	13	185
Vernava et al. 1992 (35)	USA	42	10 cm (Median 8 cm)	Fresh	All	6	20	23	219

Table 2: The studies regarding the local recurrence rate of the group with DRM more and less than 5 mm

	<5 m	m	>5 m	m		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Anderola et al. 2001	4	24	3	49	4.8%	3.07 [0.63, 14.98]	
Bhamre et al. 2019	0	16	4	226	1.5%	1.50 [0.08, 29.04]	
Kang et al. 2016	3	45	24	370	7.1%	1.03 [0.30, 3.57]	
Kim et al. 2014	169	1840	68	736	26.9%	0.99 [0.74, 1.33]	+
Kiran et al. 2011	4	- 77	22	706	8.6%	1.70 [0.57, 5.08]	
Kuvshinoff et al. 2001	1	9	0	19	1.2%	6.88 [0.25, 186.68]	
Kwak et al. 2012	6	61	23	315	10.6%	1.38 [0.54, 3.56]	
Rutkowski et al. 2008	5	42	19	124	9.1%	0.75 [0.26, 2.14]	
Silberfein et al. 2010	3	37	6	82	5.6%	1.12 [0.26, 4.73]	
Stocchi et al. 2001	29	167	13	185	15.4%	2.78 [1.39, 5.55]	_
Vernava et al. 1992	6	20	23	219	9.2%	3.65 [1.28, 10.43]	
Total (95% CI)		2338		3031	100.0%	1.52 [1.05, 2.22]	◆
Total events	230		205				
Heterogeneity: Tau ² = 0.	.11; Chi ² =	= 15.11	, df = 10	(P = 0.1	3); I ^z = 34	4%	
Test for overall effect: Z	= 2.19 (P	= 0.03))	-			0.01 0.1 1 10 100 Favours [experimental] Favours [control]

Figure 3: Forest plot of the local recurrence rate of the group with DRM more and less than 5 mm (14, 16, 21, 24, 32-36)

Author	Country	Duration of	Distance from	Measured	Stage	DRM	<2 cm	DRM	l >2 cm
		follow up (months)	the anal verge	pathology specimen		n	Total	n	Total
Bernstein et al. 2009 (15)	Norway	60	15 cm (94.6% mid-upper; 5.4% lower)	Fixed	1-111	153	1315	166	2027
Bokey et al. 1999 (17)	Australia	60	15 cm (Lower 31.5%; Mid 29/9%; Upper 38.6%)	Fresh	All	12	124	47	472
Ghahramani et al. 2015 (37)	Iran	24	15 cm (Mean 6.4 cm)	Fixed	1-111	36	37	16	45
Lim et al. 2012 (29)	Singapore	45	12 cm	Fixed	1-111	14	191	7	129
Moore et al. 2003 (8)	USA	118	15 cm (Mean 6 cm)	Fresh	All	4	53	5	41
Safioleas et al. 2005 (38)	Greece	60	15 cm	Fresh	All	8	15	4	51

Table 3: The studies regarding the local recurrence rate of the group with DRM more and less than 2 cm

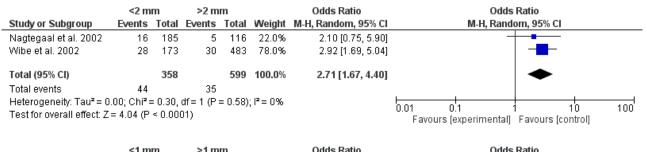

	<2 ci	m	>2 ci	m		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Bernstein et al. 2009	153	1315	166	2027	24.1%	1.48 [1.17, 1.86]	-
Bokey et al. 1999	12	124	47	472	20.9%	0.97 [0.50, 1.89]	
Gharamani et al. 2015	36	37	16	45	9.1%	65.25 [8.16, 521.58]	
Lim et al. 2012	14	191	7	129	18.3%	1.38 [0.54, 3.52]	
Moore et al. 2003	4	53	5	41	14.0%	0.59 [0.15, 2.34]	
Safioleas et al. 2005	8	15	4	51	13.6%	13.43 [3.18, 56.63]	
Total (95% CI)		1735		2765	100.0%	2.24 [1.01, 4.93]	-
Total events	227		245				
Heterogeneity: Tau ² = 0.	66; Chi =	25.49,	df = 5 (P	= 0.000	01); l² = 8l	0%	0.01 0.1 1 10 100
Test for overall effect: Z =	= 1.99 (P =	= 0.05)					Favours [experimental] Favours [control]

Figure 4: Forest plot of the local recurrence rate of the group with DRM more and less than 2 cm (8, 15, 17, 29, 38, 39)

Author	Country	Duration of	Distance	Measured	Stage	CRN	/I <1 cm	CRM >1 cm	
		follow up (months)	from the anal verge	pathology specimen		n	Total	n	Total
Nagtegaal et al. 2002 (39)	Netherlands	36	15 cm	Fixed	All	53	467	10	189
Wibe et al. 2002 (40)	Norway	39	16 cm	Fixed	All	39	403	7	283
Author	Country	Duration of	Distance	Measured	Stage	CRIV	l <5 mm	CRM >5 mm	
		follow up (months)	from the anal verge	pathology specimen		n	Total	n	Total
Lim et al. 2012 (29)	Singapore	45	12 cm	Fixed	1-111	16	185	5	116
Nagtegaal et al. 2002 (39)	Netherlands	36	15 cm	Fixed	All	28	173	30	483
Author	Country	Duration of	Distance	Measured pathology	Stage	CRIV	l <2 mm	CRM	>2 mm
			follow up from the (months) anal verge			n	Total	n	Total
Nagtegaal et al. 2002 (39)	Netherlands	36	15 cm	Fixed	All	43	312	15	344
Wibe et al. 2002 (40)	Norway	39	16 cm	Fixed	All	27	170	19	516
Author	Country	Duration of	Distance	Measured	Stage	CRM <1 mm		CRM >1 mm	
		follow up (months)	from the anal verge	pathology specimen		n	Total	n	Total
Birbeck et al. 2002 (41)	UK	60	12 cm	Fixed	All	63	163	42	421
Lim et al. 2012	Singapore	45	12 cm	Fixed	1-111	12	103	9	198
Nagtegaal et al. 2002 (39)	Netherlands	36	15 cm	Fixed	All	20	120	38	536
Wibe et al. 2002 (40)	Norway	39	16 cm	Fixed	All	14	65	32	621
Zeng et al. 2017 (42)	China	60	12 cm	Fixed	All	22	97	18	145

	<1 ci	m	>1 ci	m		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Nagtegaal et al. 2002	53	467	10	189	63.0%	2.29 [1.14, 4.61]	
Wibe et al. 2002	39	403	7	283	37.0%	4.22 [1.86, 9.59]	
Total (95% CI)		870		472	100.0%	3.01 [1.77, 5.11]	•
Total events	92		17				
Heterogeneity: Chi ² = 1.	24, df = 1	(P = 0.	26); i² = 2	20%			
Test for overall effect: Z	= 4.07 (P	< 0.001	D1)				0.01 0.1 1 10 100 Favours [experimental] Favours [control]

	<5 m	m	>5 m	m		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Nagtegaal et al. 2002	43	312	15	344	50.5%	3.51 [1.91, 6.45]	
Wibe et al. 2002	27	170	19	516	49.5%	4.94 [2.67, 9.14]	
Total (95% CI)		482		860	100.0%	4.15 [2.69, 6.41]	•
Total events	70		34				
Heterogeneity: Tau ² = 0	.00; Chi ² =	0.61,	df = 1 (P :	= 0.43)	l ² = 0%		0.01 0.1 1 10 100
Test for overall effect: Z	= 6.44 (P	< 0.00	001)				Favours [experimental] Favours [control]

	<1 m	m	>1 m	m		Odds Ratio	Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Rand	om, 95% Cl	
Birbeck et al. 2002	63	163	42	421	26.4%	5.68 [3.63, 8.90]			
Lim et al. 2012	12	103	9	198	13.9%	2.77 [1.13, 6.81]			
Nagtegaal et al. 2002	20	120	38	536	21.9%	2.62 [1.46, 4.69]			
Wibe et al. 2002	14	65	32	621	18.8%	5.05 [2.53, 10.07]			
Zeng et al. 2017	22	97	18	145	18.9%	2.07 [1.04, 4.11]			
Total (95% CI)		548		1921	100.0%	3.51 [2.30, 5.35]		•	
Total events	131		139						
Heterogeneity: Tau ² = 0	l.12; Chi ² ÷	= 8.82,	df = 4 (P	= 0.07)	; I ² = 55%	,			4.00
Test for overall effect: Z	= 5.81 (P	< 0.00	001)				0.01 0.1 Favours (experimental)	1 10 Favours (control)	100

Figure 5: Forest plot of the local recurrence rate of the group with various cut off points of CRM (a) 1 cm, (b) 5 mm (c) 2 mm, (d) 1 mm (29, 39-42)

Author	Country	Duration of	Distance from	Measured	Stage	DRM	1 <2 cm	DRM	1 >2 cm
		follow up (months)	the anal verge	pathology specimen		n	Total	n	Total
Lim et al. 2012 (29)	Singapore	45	12 cm	Fixed	1-111	38	191	35	129
Author	Country	Duration of	Distance from	Measured	Stage	DRM	1 <1 cm	DRM	1 >1 cm
		follow up (months)	the anal verge	pathology specimen		n	Total	n	Total
Bernstein et al. 2009 (15)	Norway	60	15 cm (94.6% mid-upper; 5.4% lower)	Fixed	All	92	519	570	2823
Bhamre et al. 2019 (16)	India	62	10 cm (55.4% mid; 44.6% 108 lower)	Fixed	All	11	41	43	201
Han et al. 2013 (18)	Korea	60	10 cm	Fixed	All	24	129	42	198
Kang et al. 2016 (21)	Korea	60	NA	Fixed	All	16	132	140	283
Leo et al. 2009 (28)	Italy	92	5 cm	Fresh	All	21	94	15	84
Lim et al. 2012 (29)	Singapore	45	12 cm	Fixed	1-111	23	148	40	172
Author	Country	Duration of	Distance from	Measured	Stage	DRM	<5 mm	DRM	>5 mm
		follow up (months)	the anal verge	pathology specimen		n	Total	n	Total
Bhamre et al. 2019 (16)	India	62	10 cm (55.4% mid; 44.6% 108 lower)	Fixed	All	5	16	49	226

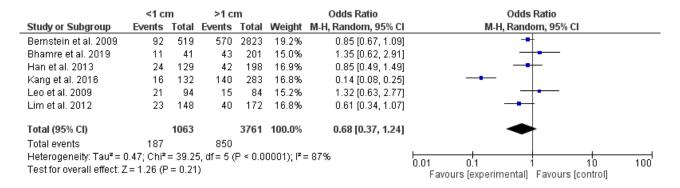


Figure 6: Forest plot of the distant recurrence rate of the group with 1 cm cut off point of DRM (15, 16, 18, 21, 28, 29)

The distant recurrence rate of the group with various cut-off points of CRM

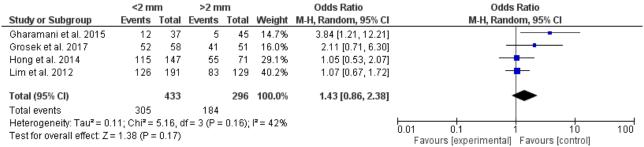
There was a total of 4 studies that included in the metaanalysis of distant recurrence rate of the group with various CRM cut off points. This meta-analysis showed significant lower distant recurrence rate with the cut-off point of CRM by 1 mm (OR 2.67; 95%Cl 1.34-5.31; p=0.005; l^2 79%), but not with cut-off point of CRM by 2 mm (Figure 7) (29, 39, 40, 42.

	<2 m	m	>2 m	m		Odds Ratio	Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl			
Lim et al. 2012	50	185	20	116	57.7%	1.78 [0.99, 3.18]	⊢∎			
Nagtegaal et al. 2002	10	173	5	483	42.3%	5.87 [1.98, 17.41]				
Total (95% CI)		358		599	100.0%	2.94 [0.93, 9.36]				
Total events	60		25							
Heterogeneity: Tau ² = 0. Test for overall effect: Z	•			= 0.06)	; I² = 72%		0.01 0.1 1 10 100 Favours [experimental] Favours [control]			
	<1 m	m	>1 m	m		Odds Ratio	Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl			
Lim et al. 2012	30	103	40	198	27.1%	1.62 [0.94, 2.81]				
Nagtegaal et al. 2002	8	120	7	536	18.8%	5.40 [1.92, 15.19]				
Wibe et al. 2002	26	65	74	621	27.1%	4.93 [2.84, 8.56]	_ _			
Zeng et al. 2017	33	97	38	145	26.9%	1.45 [0.83, 2.54]	+ - -			
Total (95% CI)		385		1500	100.0%	2.67 [1.34, 5.31]	-			
Total events	97		159							
Heterogeneity: Tau² = 0. Test for overall effect: Z				° = 0.00)3); ² = 79	3%	0.01 0.1 1 10 100 Favours [experimental] Favours [control]			

Figure 7: Forest plot of the distant recurrence rate of the group with 2 mm and 1 mm cut off point of CRM (29, 39, 40, 42)

The survival rate of the group with various cut off points of DRM and CRM

The survival rate of the group with various cut off points of DRM mostly were not statistically significant except for disease-free survival parameter in with the cut-off point of DRM by 1 cm (Figures 8-10) (8, 15, 18, 19, 21, 25, 26, 28, 29, 32, 34, 35-37, 43). Further, there was insufficient data for carrying out meta-analysis for survival rate with the parameter of CRM (Table 6) (39,40).


Bias assessment

The bias assessment of this meta-analysis was shown in Figure 11.

Discussion

The rectal cancer surgery was challenging due to rectum anatomical location at the distal area and confined to the pelvic cavity (45). The surgical procedures for rectal cancer highly developed since the introduction of Miles operation in 1908, focused not only on preserving function but also on oncological aspects (46). In 1948, Dixon reported the technique of anterior resection from abdominal approach (47). In 1982, Heald et al. introduced an important oncological adequacy, total mesorectal excision (TME), which has now become the standard method for rectal cancer surgery (3). Despite that, the high recurrence rate after the surgery has forced the operator to carry out the optimal resection margin. An increasing acceptance for a

	<2 m	m	>2 m	m		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Gharamani et al. 2015	25	37	18	45	30.9%	3.13 [1.26, 7.77]	
Hong et al. 2014	144	147	70	71	9.6%	0.69 [0.07, 6.71]	
Lim et al. 2012	170	191	118	129	35.3%	0.75 [0.35, 1.62]	
Moore et al. 2003	47	53	34	41	24.2%	1.61 [0.50, 5.23]	
Total (95% CI)		428		286	100.0%	1.39 [0.64, 3.05]	-
Total events	386		240				
Heterogeneity: Tau ² = 0.	30; Chi ² =	5.90, c	lf = 3 (P =	0.12);	l² = 49%		
Test for overall effect: Z =	= 0.83 (P =	= 0.40)					Favours [experimental] Favours [control]

Figure 8: Forest plot of (a) Disease-free survival, (b) Overall survival of the group with cut off point of DRM by 2 mm (19, 29, 37, 43)

	<5 m	m	>5 m	m		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Kang et al. 2016	39	45	59	87	23.1%	3.08 [1.17, 8.14]	
Kiran et al. 2011	49	77	445	706	45.0%	1.03 [0.63, 1.67]	
Kwak et al. 2012	51	61	256	315	32.0%	1.18 [0.56, 2.45]	_ _
Total (95% CI)		183		1108	100.0%	1.38 [0.78, 2.46]	•
Total events	139		760				
Heterogeneity: Tau ² =	= 0.13; Ch	i ² = 4.0	0, df = 2 ((P = 0.1	4); I ² = 50	1%	
Test for overall effect	Z=1.10	(P = 0.2	27)				0.01 0.1 1 10 10 Favours [experimental] Favours [control]
	<5	mm	>5	mm		Odds Ratio	Odds Ratio
Study or Subgroup	Execut	o Toto	J Event	o Toto	J Moigh	t M H Dandom 05% C	M U Dandom 05% Cl

	< <u>5</u> m	m	~5 m			Ouus Rauo	Ouus Rauo		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% (81	
Kang et al. 2016	36	45	73	87	17.0%	0.77 [0.30, 1.94]			
Kwak et al. 2012	49	61	242	315	29.7%	1.23 [0.62, 2.44]	_		
Rutkowski et al. 2008	7	11	103	152	9.3%	0.83 [0.23, 2.98]			
Rutkowski et al. 2012	48	58	269	352	26.8%	1.48 [0.72, 3.06]			
Vernava et al. 1992	10	20	148	219	17.2%	0.48 [0.19, 1.21]			
Total (95% CI)		195		1125	100.0%	0.98 [0.66, 1.45]	•		
Total events	150		835						
Heterogeneity: Tau ^z = 0.	.02; Chi ² :	= 4.33,	df = 4 (P	= 0.36)	; I ² = 8%			10	100
Test for overall effect: Z	= 0.11 (P	= 0.91))				Favours [experimental] Favours		100

Figure 9: Forest plot of (a) Disease-free survival, (b) Overall survival of the group with cut off point of DRM by 5 mm (21, 25, 32, 35, 36, 44)

Stocchi et al. 2001

10

100

	<1 ci	m	>1 c	m		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Hong et al. 2014	79	81	98	137	10.2%	15.72 [3.68, 67.12]	
Kang et al. 2016	99	132	76	283	29.2%	8.17 [5.09, 13.12]	
Kiran et al. 2011	528	784	67	586	33.8%	15.98 [11.90, 21.46]	
Kuvshinoff et al. 2001	9	16	85	12		Not estimable	
Lim et al. 2012	129	148	91	172	26.7%	6.04 [3.43, 10.66]	_ _ _
Moore et al. 2003	14	17	85	77		Not estimable	
Total (95% CI)		1178		1267	100.0%	10.11 [5.87, 17.43]	•
Total events	858		502				
Heterogeneity: Tau ² = 0).21; Chi ² ⊧	= 11.88	, df = 3 (F	P = 0.00	08); l² = 79	5%	0.01 0.1 1 10 100
Test for overall effect: Z	= 8.33 (P	< 0.00	001)				Favours [experimental] Favours [control]
	<1 ci	m	>1 c	m		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Bernstein et al. 2009	356	519	1934	2823	23.3%	1.00 [0.82, 1.23]	+
Han et al. 2013	105	129	158	198	11.2%	1.11 [0.63, 1.94]	_ _
Hong et al. 2014	63	81	106	137	9.1%	1.02 [0.53, 1.98]	
Kang et al. 2016	109	132	243	283	11.2%	0.78 [0.45, 1.37]	
Leo et al. 2009	76	94	58	84	8.6%	1.89 [0.95, 3.78]	
Lim et al. 2012	112	148	104	172	13.2%	2.03 [1.25, 3.30]	_
Rutkowski et al. 2008	28	42	87	122	7.6%	0.80 [0.38, 1.71]	

0.48 [0.19, 1.21] Vernava et al. 1992 20 148 10 219 5.6% 1.08 [0.85, 1.38] Total (95% CI) 1219 4336 100.0% Total events 3032 894 Heterogeneity: Tau² = 0.06; Chi² = 14.54, df = 8 (P = 0.07); l² = 45% Test for overall effect: Z = 0.61 (P = 0.54)

194 298 10.2%

54

35

Figure 10: Forest plot of (a) Disease-free survival, (b) Overall survival of the group with cut off point of DRM by 1 cm (8, 15, 18, 19, 21, 25, 26, 28, 29, 32, 34, 35)

0.99 [0.54, 1.81]

0.01

0.1

Favours [experimental] Favours [control]

Author Country		Duration of	Distance	Measured	Stage	CRM <	CRM <5 mm		CRM >5 mm	
		follow up (months)	from the anal verge	pathology specimen		n	Total	n	Total	
Nagtegaal et al. 2002 (39)	Netherland	36	15 cm	Fixed	All	76.2	235	89.2	451	
Author Country		Duration of	Distance	Measured	Stage	CRM <	CRM <2 mm		CRM >2 mm	
	follow up (months)	from the anal verge	pathology specimen		n	Total	n	Total		
Nagtegaal et al. 2002 (39)	Netherland	36	15 cm	Fixed	All	77.3	173	90.3	483	
Author	Country	Duration of	Distance	Measured	Stage	CRM <	1 mm	CRM >	1 mm	
		follow up (months)	from the anal verge	pathology specimen		n	Total	n	Total	
Wibe et al. 2002 (40)	Norway	39	16 cm	Fixed	All	53	65	88.4	621	

	Table 6: The studies	regarding the overal	I survival rate of the grou	up with various cut off	point of CRM
--	----------------------	----------------------	-----------------------------	-------------------------	--------------

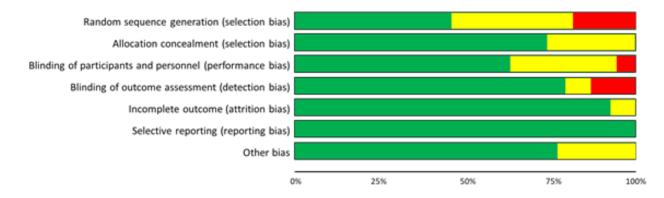


Figure 11: Bias assessment of this study. Green: low risk, yellow: unspecified, red: high risk

narrower margin of resection has been seen along with the encouraging results from most of the studies (35-38).

The distal resection margin (DRM) was defined as the most distal edge of surgical specimen of the tumor (25-28). The recommendation for DRM was evolving throughout the decades. In 1951, Goligher et al. recommended 5 cm, but this margin was debated following the recognition of total mesorectal excision and presurgical chemoradiation. By the findings of William et al (1983), DRM of 2 cm was taken as a cut off standard (9). Studies regarding the best minimal margin still advancing and many showed no inferior outcome even less than 1 cm DRM was performed (8, 26). However, a DRM of 2 cm is still recommended for subjects who have not received presurgical chemotherapy. Currently, Both the US National Cancer Institute and the 9th World Congress of Gastrointestinal Cancer recommended DRMs of 2-5 cm for mid and high rectal cancers, and a 1-cm margin for the distal tumours (45). Meta-analysis of Bujko et al even showed that DRM less than 1 cm even 5 mm was associated with neither local recurrence nor survival. However, the importance of patient selection for this approach should be emphasized (48).

In this study, the local (only fresh specimen measurement) of the group with DRM less than 1 cm was significantly higher than the group with DRM more than 1 cm (OR 1.92; 95%CI 1.21-3.06; p=0.006; I² 35%). If data analysis was done thoroughly with the measurement of fixed specimen, an insignificant result was shown. This data emphasized the important standard of measurement for specimens. The frozen section result for the DRM may be falsely negative in 12% of all cases. If the specimen is not pinned, the length of the DRM can shrink by 10-50% in a non-radiated rectum after formalin fixation. On another side, pinning the specimen stretched the rectal mucosa more than unpinned status (49). Thus, the method of measurement of the distal margin requires specific definition, as different techniques provide different results. Unfortunately, most studies do not identify how the length of the distal margin was determined. Comparison of various measurement methods are urgently needed to determine oncologically safe DRM (50).

Further, the author analyzed taking the lower cut-off point, 5 mm. From 11 studies, this meta-analysis proved that the local recurrence rate was significantly higher in the group who had DRM less than 5 mm compared to the group with DRM more than 5 mm (OR 1.52; 95%Cl 1.05-2.29; p=0.03; l² 34%). This should be a good result to be considered in clinical practice. Not surprising, taking a larger 2 cm as a cut-off point showed that less than 2 cm gave a significantly worse result than more than 2 cm.

Currently, many studies proposed the use of CRM instead of DRM. In a study of 1,861 patients, 17% of patients with positive CRM had a 2-year local recurrence rate of 13% compared to 4% with a negative margin (51). This metaanalysis showed that taking the point of local recurrence rate, even CRM as minimal as 1 mm could be promising. The author believed that in future clinical practice, both DRM and CRM should be taken consideration in doing surgery.

For the parameter of distant recurrence rate and survival rate, the author could not make a conclusion due to the lack of data from previous studies. Nevertheless still, there was a trend that the larger the margin length, the better outcome. Further, the determination of previous treatment such as chemoradiation might be a favorable aspect in reducing DRM. Author also understood that distal tumoral spread was not only related to distal resection margin but also, the tumor size, infiltration to perirectal tissue, lymph node involvement, invasion of tumor to nerve branch, and histopathological results.

Larger and controlled studies were recommended for further research. Future research should elaborate subjects from worldwide and standardize measuring margins from fixed or fresh specimen.

Conclusion

This meta-analysis showed that taking 5 mm as a cut-off point was optimal to control the local recurrence rate in rectal cancer. The difference between distant recurrence and survival rate could not be determined due to lack of data from previous studies.

Acknowledgment

The authors acknowledged the Division of Surgical Oncology, Department of Surgery, Denpasar, Bali, Indonesia, which has given a support for this study.

Financial support

This study had no third-party funding. This study was selffunded by the author listed in this study.

Data availability

The data used in this paper is available from the corresponding author upon reasonable request.

Competing interests

The authors have declared that there is no conflict of interest regarding the publication of this paper.

References

- 1. van Gijn W, Marijnen CA, Nagtegaal ID, Kranenbarg EM, Putter H, Wiggers T, *et al.* Preoperative radiotherapy combined with total meso-rectal excision for resectable rectal cancer: 12-year followup of the multicentre, randomised controlled TME trial. Lancet Oncol. 2011;12(6):575-82.
- Zheng W, Liu M, Zhou Z, Wang Z. A distal resection margin of ≤1 mm and rectal cancer recurrence after sphincter-preserving surgery. Dis Colon Rectum. 2017;60(11):1175-83.
- Heald RJ, Husband EM, Ryall RD. The mesorectum in rectal cancer surgery--the clue to pelvic recurrence? Br J Surg. 1982;69(10):613-6.
- Wibe A, Syse A, Andersen E, Tretli S, Myrvold HE, Soreide O. Oncological outcomes after total mesorectal excision for cure for cancer of the lower rectum: anterior vs. abdominoperineal resection. Dis Colon Rectum. 2004;47(1):48-58.
- Gosens MJ, Klaassen RA, Tan-Go I, Rutten HJ, Martijn H, van den Brule AJ, et al. Circumferential margin involvement is the crucial prognostic factor after multimodality treatment in patients with locally advanced rectal carcinoma. Clin Cancer Res. 2007;13(22):6617-23.
- Balch GC, De Meo A, Guillem JG. Modern management of rectal cancer: a 2006 update. World J Gastroenterol. 2006;12(20):3186-95.
- Guillem JG, Chessin DB, Shia J, Suriawinata A, Riedel E, Moore HG, et al. A prospective pathologic analysis using whole-mount sections of rectal cancer following preoperative combined modality therapy: implications for sphincter preservation. Ann Surg. 2007;245(1):88-93.
- Moore HG, Riedel E, Minsky BD, Saltz L, Paty P, Wong D, et al. Adequacy of 1-cm distal margin after restorative rectal cancer resection with sharp mesorectal excision and preoperative combinedmodality therapy. Ann Surg Oncol. 2003;10(1):80-5.
- 9. Williams NS, Dixon MF, Johnston D. Reappraisal of the 5 centimetre rule of distal excision for carcinoma of

the rectum: a study of distal intramural spread and of patients' survival. Br J Surg. 1983;70(3):150-4.

- Shirouzu K, Isomoto H, Kakegawa T. Distal spread of rectal cancer and optimal distal margin of resection for sphincter-preserving surgery. Cancer. 1995;76(3):388-92.
- 11. Ono C, Yoshinaga K, Enomoto M, Sugihara K. Discontinuous rectal cancer spread in the mesorectum and the optimal distal clearance margin in situ. Dis Colon Rectum. 2002;45(6):744-9.
- 12. Wang Z, Zhou ZG, Wang C, Zheng XL, Wang R, Li FY, *et al.* Regional micrometastasis of low rectal cancer in mesorectum: a study utilizing HE stain on wholemount section and ISH analyses on tissue microarray. Cancer Invest. 2006;24(4):374-81.
- National Comprehensive Cancer Network. NCCN guidelines: Rectal cancer. 2020. Available at: https://www.nccn.org/guidelines/guidelinesdetail?category=1&id=1461. Accessed 28 January 2022.
- 14. Andreola S, Leo E, Belli F, Lavarino C, Bufalino R, Tomasic G, *et al.* Distal intramural spread in adenocarcinoma of the lower third of the rectum treated with total rectal resection and coloanal anastomosis. Dis Colon Rectum. 1997;40(1):25-9.
- 15. Bernstein TE, Endreseth BH, Romundstad P, Wibe A, Norwegian Colorectal Cancer Registry. What is a safe distal resection margin in rectal cancer patients treated by low anterior resection without preoperative radiotherapy? Colorectal Dis. 2012;14(2):48-55.
- Bhamre R, Mitra A, Tamankar A, Desouza A, Saklani A. Impact of length of distal margin on outcomes following sphincter preserving surgery for middle and lower third rectal cancers. Indian J Surg Oncol. 2019;10(2):335-41.
- 17. Bokey EL, Ojerskog B, Chapuis PH, Dent OF, Newland RC, Sinclair G. Local recurrence after curative excision of the rectum for cancer without adjuvant therapy: role of total anatomical dissection. Br J Surg. 1999;86(9):1164-70.
- Han JW, Lee MJ, Park HK, Shin JH, An MS, Ha TK, et al. Association between a close distal resection margin and recurrence after a sphincter-saving resection for t3 mid- or low-rectal cancer without radiotherapy. Ann Coloproctol. 2013;29(6):231-7.
- 19. Hong KS, Moon N, Chung S, Lee RA, Kim KH. Oncologic outcomes in rectal cancer with close distal resection margins: a retrospective analysis. Ann Surg Treat Res. 2005;89(1):23-7.
- Huh JW, Jung EJ, Park YA, Lee KY, Sohn SK. Sphincterpreserving operations following preoperative chemoradiation: an alternative to abdominoperineal resection for lower rectal cancer? World J Surg. 2008;32:1116–23.
- Kang DW, Kwak HD, Sung NS, Yang IS, Baek SJ, Kwak JM, et al. Oncologic outcomes in rectal cancer patients with a ≤1-cm distal resection margin. Int J Colorectal Dis. 2017;32(3):325-32.

- Karanjia ND, Schache DJ, North WR, Heald RJ. 'Close shave' in anterior resection. Br J Surg. 1990;77(5):510-2.
- 23. Kim YW, Kim NK, Min BS. Factors associated with anastomotic recurrence after total mesorectal excision in rectal cancer patients. J Surg Oncol. 2009;99:58–64.
- 24. Kim TG, Park W, Choi DH, Kim SH, Kim HC, Lee WY, *et al*. The adequacy of the distal resection margin after preoperative chemoradiotherapy for rectal cancer. Colorectal Dis. 2014;16(8):257-63.
- Kiran RP, Lian L, Lavery IC. Does a subcentimeter distal resection margin adversely influence oncologic outcomes in patients with rectal cancer undergoing restorative proctectomy? Dis Colon Rectum. 2011;54(2):157-63.
- Kuvshinoff B, Maghfoor I, Miedema B. Distal margin requirements after preoperative chemoradiotherapy for distal rectal carcinomas: are < or = 1 cm distal margins sufficient? Ann Surg Oncol. 2001;8(2):163-9.
- 27. Law WL, Chu KW. Local recurrence following total mesorectal excision with double-stapling anastomosis for rectal cancers: analysis of risk factors. World J Surg. 2002;26:1272–76.
- Leo E, Belli F, Miceli R, Mariani L, Gallino G, Battaglia L, et al. Distal clearance margin of 1 cm or less: a safe distance in lower rectum cancer surgery. Int J Colorectal Dis. 2009;24(3):317-22.
- 29. Lim JW, Chew MH, Lim KH, Tang CL. Close distal margins do not increase rectal cancer recurrence after sphincter-saving surgery without neoadjuvant therapy. Int J Colorectal Dis. 2012;27(10):1285-94.
- Manegold P, Taukert J, Neff H, Fichtner-Feigl S, Thomas O. The minimum distal resection margin in rectal cancer surgery and its impact on local recurrence - a retrospective cohort analysis. Int J Surg. 2019;69:77-83.
- Priolo VE, Abodeely A, Resnick M. Distal margins in radical resections for rectal cancer after chemoradiation therapy: how short is long enough? Dig Surg. 2010;27(3):185-9.
- 32. Rutkowski A, Bujko K, Nowacki MP, Polish Colorectal Study Group. Distal bowel surgical margin shorter than 1 cm after preoperative radiation for rectal cancer: is it safe? Ann Surg Oncol. 2008;15:3124-31.
- Silberfein EJ, Kattepogu KM, Hu CY, Skibber JM, Rodriguez-Bigas MA, Feig B, *et al.* Long-term survival and recurrence outcomes following surgery for distal rectal cancer. Ann Surg Oncol. 2010;17(11):2863-9.
- Stocchi L, Nelson H, Sargent DJ, O'Connell MJ, Tepper JE, Krook JE, et al. Impact of surgical and pathologic variables in rectal cancer: a United States community and cooperative group report. J Clin Oncol. 2001;19(18):3895-902.
- Vernava AM 3rd, Moran M, Rothenberger DA, Wong WD. A prospective evaluation of distal margins in carcinoma of the rectum. Surg Gynecol Obstet. 1992;175(4):333-6.
- 36. Kwak JY, Kim CW, Lim SB, Yu CS, Kim TW, Kim JH, *et al.* Oncologically safe distal resection margins in rectal

cancer patients treated with chemoradiotherapy. J Gastrointest Surg. 2012;16(10):1947-54.

- 37. Gharamani L, Forooghi M, Mohammadianpanah M, Hosseini SV. Safe distal margin resection in patients with low rectal cancer undergoing neoadjuvant chemoradiation. Int J Rad Res. 2016;14(3):215-20.
- Safioleas MC, Moulakakis KG, Stamatakos M, Kountouras J, Lygidakis NJ. Local recurrence following curative low anterior resection for rectal carcinoma. Hepatogastroenterology. 2005;52(61):94-6.
- 39. Nagtegaal ID, Marijnen CA, Kranenbarg EK, van de Velde CJ, van Krieken JH, Pathology Review Committee, *et al.* Circumferential margin involvement is still an important predictor of local recurrence in rectal carcinoma: not one millimeter but two millimeters is the limit. Am J Surg Pathol. 2002;26(3):350-7.
- 40. Wibe A, Rendedal PR, Svensson E, Norstein J, Eide TJ, Myrvold HE, *et al.* Prognostic significance of the circumferential resection margin following total mesorectal excision for rectal cancer. Br J Surg. 2002;89(3):327-34.
- 41. Birbeck KF, Macklin CP, Tiffin NJ. Rates of circumferential resection margin involvement vary between surgeons and predict outcomes in rectal cancer surgery. Ann Surg. 2002;235(4):449-57.
- 42. Zeng WG, Liu MJ, Zhou ZX, Wang ZJ. A distal resection margin of ≤1 mm and rectal cancer recurrence after sphincter-preserving surgery: the role of a positive distal Margin in rectal cancer surgery. Dis Colon Rectum 2017;60:1175-83.
- 43. Grosek J, Velenik V, Edhemovic I, Omejc M. The influence of the distal resection margin length on local recurrence and long-term survival in patients with rectal cancer after chemoradiotherapy and sphincter-preseving rectal resection. Radiol Oncol. 2016 24;51(2):169-77.
- Rutkowski A, Nowacki MP, Chwalinski M, Oledzki J, Bednarczyk M, Liszka-Dalecki P, *et al.* Acceptance of a 5-mm distal bowel resection margin for rectal cancer: is it safe? Colorectal Dis. 2012;14(1):71-8.
- 45. Nelson H, Petrelli N, Carlin A, Couture J, Fleshman J, Guillem J, *et al.* Guidelines 2000 for colon and rectal cancer surgery. J Natl Cancer Inst. 2001;93(8):583-96.
- 46. Mayo WJ. The radical operation for cancer of the rectum and rectosigmoid. Trans Am Surg Assoc. 1916;34:261-5.
- 47. Dixon CF. Anterior resection for malignant lesions of the upper part of the rectum and lower part of the sigmoid. Ann Surg. 1948;128(3):425-42.
- 48. Bujko K, Rutkowski A, Chang GJ, Michalski W, Chmielik E, Kusnierz J. Is the 1-cm rule of distal bowel resection margin in rectal cancer based on clinical evidence? A systematic review. Ann Surg Oncol. 2012;19(3):801-8.
- 49. Kapali AS, Chandramohan K, Jayasudha AV. A prospective study of distal microscopic spread in rectal cancer after neoadjuvant chemoradiation in pinned and unpinned specimen. Indian J Surg Oncol. 2017;8(4):469-73.

- 50. Park IJ, Kim JC. Adequate length of the distal resection margin in rectal cancer: from the oncological point of view. J Gastrointest Surg. 2010;14(8):1331-7.
- 51. Marijnen CA, Nagtegaal ID, Kapiteijn E, Kranenbarg EK, Noordijk EM, van Krieken JH, et al. Radiotherapy does not compensate for positive resection margins in rectal cancer patients: report of a multicenter randomized trial. Int J Radiat Oncol Biol Phys. 2003;55(5):1311-20.