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Abstract 

The synthesis of a series of 3,3-diheteroaromatic oxindoles has been 

effectively produced through treatment of indole-2,3-dione (isatin) with 

various indoles and pyrroles using quaternized poly(4-

vinylpyridine)iodinium iodide , under solvent-free condition and neutral 

medium. The reaction proceeds rapidly with excellent yields. This catalyst 

has been shown to be stable and highly recyclable. 
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1. Introduction 

Functionalized polymers as macromolecules containing same or different functional groups 

attract great attention due to  some advantages over their functional monomers [1]. The most 

important benefit of the functionalized polymer in the reactions is their easy separation from the 

reaction medium. Additionally, supported reagents can be applied in excess to speed up the 

reactions without increasing work-up costs. Furthermore, these polymeric materials can be 

highly recyclable. It has been demonstrated that the structural properties of the polymeric support 

and the nature and extent of cross-linking can influence on the activity of functional groups 

linked either covalently or ionically to the polymeric support, through modifying  polarity, swell 

ability, and etc [1–3]. 

Iodine has received a great attention because it is the least effective oxidant and a weak 

electrophile; therefore, it frequently requires the aid of a strong oxidizer or acid [4]. Compared to 

most acidic metal-based catalysts, iodine has numerous advantages. With an interestingly wide 

catalytic potential, it is a cost-effective chemical that is moisture tolerant. Iodine also has 
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considerable catalytic efficiency in low concentration solutions, highly concentrated reaction 

conditions (HCRC), and solvent-free reaction conditions (SFRC), which is another 

distinguishing feature of iodine. The subsequent reaction conditions are especially crucial for 

green chemistry since they reduce waste generation, health risks, and operating costs. Iodine has 

long been regarded in carbohydrate chemistry as an effective reagent and catalyst [5,6]. 

Numerous aspects of the chemistry of iodine, such as its usage as a catalyst and its role in 

protection/deprotection chemistry have also been explored and published [7–9]. 

Oxindoles have been granted patents as PR (progesterone receptors) agonists and have been 

revealed antibacterial, antiprotozoal, and anti-inflammatory properties [10,11]. It has been shown 

convolutamydine, an oxindole found in nature, has been proven to exhibit significant impacts on 

the differentiation of HL-60 human plomyelocytic leukemic cells. The wide range of biological 

properties of oxindole scaffolds and the anti-spermatogenic potential of indole derivatives have 

drawn synthetic chemists to a variety of synthetic techniques [12,13]. Although they were 

presented as highly effective, most of the techniques relied on the condensation of arenes with 

isatins in acidic media and have certain drawbacks in terms of cost, time of reaction, operational 

conditions, selectivity, and yield [14,15]. Thus, it is vital in synthetic organic chemistry to 

develop methodologies using newer reagents that are more effective, simpler to use, have softer 

reaction conditions, and have a larger yield percentage.  

 

Scheme 1. The formation of the quaternized poly(4-vinylpyridine)iodonium triiodide. 

In this current work, the preparation and application of polymer-supported iodine, which is based 

on quaternized poly(4-vinylpyridine) and is referred to as [P(4-VPI)]+ [I3]
−, are reported as part of 

our proposed work the polymer-supported reagents reactivity (Scheme 1). It can act as a 

promising catalyst for the straightforward production of 3,3-diindolyl and 3,3-dipyrrolyl 

oxindoles without the requirement for a metal-based catalyst when incorporated with substituted 



Johari.S et al Malay. Catal.Int.J Vol 3, Issue 1(2023) 07-15 

9 
 

indoles or pyrrole under neutral and solvent-free conditions. The key benefit was that the 

problem with iodine handling and sublimation was solved by achieving high yields of the 

products. 

 

2. Results and Discussion 

2.1 Structural confirmation of the poly(4-vinylpyridine)iodonium triodide 

Figure 1 shows P(4-VP) and P(4-VPI)+ I3- FTIR spectra. In the spectra of P(4-VP), the νC=C and 

νC=N stretching vibrations in the pyridine ring appeared at 1598.88, 1554.52, 1496.66, and 

1413.72 cm-1 [16]. The [P(4-VPI)]+ cation, on the other hand, exhibited a completely different 

FTIR spectrum due to the addition of an iodine atom to the nitrogen atom of the pyridine rings 

[17]. In addition to the predicted P(4-VP) vibrations, a second distinct set of shifts was observed, 

frequently red- or blue-shifted and reflecting those of the P(4-VP) polymer, but with bigger 

absolute shifts (Figure 1). Based on a comparison with reported spectra in the literature, these 

peaks were attributed to poly(4-vinylpyridinium)-iodonium cation, [P(4-VPI)]+ [18,19]. The 

bands at 1554.52 and 1413.72 cm−1 disappeared; whereas, a strong peak at 1639.38 cm−1 

appeared, assigning to the formation of poly(4-vinylpyridine)iodonium cation through treating 

P(4-VP) with an ethanolic solution of iodine. 

 

Figure 1. FTIR spectra of P(4-VP) and [P(4-VPI]+ [I3]
−. 
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UV-visible absorption spectrum of iodine, P(4VP), and [P(4-VPI]+ [I3]
− in dichloromethane is 

shown in Figure 2. The strong absorbance values at 294 and 363 nm are assigned to the triiodide 

anion.  

 

Figure 2. UV-visible absorption spectra of iodine, P(4VP), and [P(4-VPI]+[I3]
− in 

dichloromethane. 

 

Reid and Mullikan indicated that the pyridine-iodine complex absorbance in pure pyridine 

originated from charge-transfer complex (outer complex) transforms into an inner complex [20].  

The reactions between pyridine and elemental iodine, including (pyridine) + I2 → [(pyridine)I]+ 

+ I−, or  2( pyridine) + I2 → [(pyridine)2I]+ + I3
− were also easily observed in binary pyridine-

iodine combinations in polar solvents, but not as easy in non-polar solvents [21]. It is indicated 

that the production of polyiodide anions, [I2n+1]−, in the interlayer of the polymer media was one 

of the stimulants for the ionic reaction and our research group is now conducting further 

experiments on the above-mentioned phenomenon. 

2.2 3,3-Diheteroaromatic oxindole analogues synthesis 

The condensation reaction of isatin (1) and indole (2) was initially investigated at room 

temperature with different catalyst concentrations. Though the reaction failed to give the 

corresponding product without a catalyst even after 6 hours, it was successfully proceed after 

adding the catalyst. The condensation of isatin (1) with indole (2) was also studied in the 
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presence of only elemental iodine or P(4-VP)(Table 1, entries 1 and 2). The yields of the di-

indolyl oxindole using the current methodology were quite good, as shown in Table 1. 

Table 1. Catalytic efficiency of iodine, P(4-VP) and [P(4-VPI)]+[I3]
− in the condensation of 

isatin with indole.a 

Entry Catalyst Amount of catalyst (mg) Time (min) Yield (%)b 

1 Iodine 10 45 76 

2 Poly(4-vinylpyridine) 10 1 day 34 

3 I2/P(4-VP), solvent-free 10  5 98 

aReaction conditions: isatin (1 mmol), indole or pyrrole (2 mmol), at room temperature and solvent-free conditions. 

bYields refer to GC yields. 

 

It was found that the 3,3-diindolyl and 3,3-dipyrrolyl oxindoles in 98 and 94% yield, 

respectively, were afforded as the only products using optimal loading of [P(4-VPI)]+[I3]
− (10 

mg, 3.6 mol%) (Table 2, entries 1 and 9). To demonstrate the versatility of the method, the 

condensation of indole with various indoles and pyrrole was carried out using [P(4-VPI)]+[I3]
−. 

The optimal catalyst amounts were used to perform these reactions under mild, solvent-free 

conditions. These reactions produced 3,3-diindolyl and 3,3-dipyrrolyl oxindoles in 90-98% 

isolated yield within 7 to 60 minutes (Table 2, entries 1–9) (Scheme 2). 

 

Scheme 2. The coupling isatin with different indoles and pyrrole. 

 

It is worth mentioning that isatin was smoothly coupled with 1- or 2-substituted indoles to 

produce the bisindolyl oxindoles in excellent yields of 3c, 3e, and 3f (Table 2, entries 3, 5, and 

6). By spectroscopic investigation, including NMR and Mass, as well as by comparison with the 

reported spectroscopic data in the literature, the products were identified [22–25]. In the case of 

5-methoxy indole 3d, the reaction took place at a slower rate. (Table 2, entry 4). However, the 

reaction time was reduced by increasing the catalyst loading from 10 mg to 20 mg. The 

completion of reactions with 3-substituted indoles took longer (20–45 min) which can be 
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explained by steric hindrance effect (Table 2, entries 7 and 8). The spectroscopic analysis 

confirmed the production of 3,3-di-indolyl-2-oxindoles. 

To date, a few numbers of articles were reported on the reaction of isatin with 3-substituted 

indoles [26–28]. Additionally, under the same conditions, pyrrole and isatin also efficiently 

reacted to produce 3,3-dipyrrolyl-2-oxindole 4c (Scheme 2, Table 1, entry 9). 

 

Table 2. Synthesis of oxindole derivatives (3 and 4) through condensation of different indoles 

and pyrrole with isatin (2) catalysed by poly(4-vinylpyridine)iodonium triiodide via Scheme 2. 

Entry 
Substrate 

Producta Time (min) Yield (%)b 

R1 R2 R3 R4, R5 

1 H H H CH=CH-CH=CH 3a 7 98 

2 H H H CH=C(Br)-CH=CH 3b 7 96 

3 H OCH3 H CH=CH-CH=CH 3c 10 95 

4 H H H CH=C(OCH3)-CH=CH 3d 60 90 

5 CH3 H H CH=CH-CH=CH 3e 8 92 

6 H COOH H CH=CH-CH=CH 3f 10 94 

7 H H CH3 CH=CH-CH=CH 4a 20 90 

8 H H CH2COOH CH=CH-CH=CH 4b 45 90 

9 H H H H, H 4c 7 94 

aAll products were identified by comparison of their physical and spectral data with those of authentic samples. 

bYields refer to GC yields.  

The possible mechanistic pathway for the coupling of isatin and indoles or pyrrole, which 

explains the synthesis of products, was described in Scheme 3 even though further investigation 

is required to determine the specific mechanism of the reaction. According to published research, 

the generation of a 1:1 molecular complex between P(4-VP) and elemental iodine (outer 

complex) is the first step in the process [31–33]. Further dissipation of this complex was 

accomplished in order to release the triiodide anion and poly(4-vinylpyridine)iodonium cation 

(inner complex). Therefore, molecular iodine was transformed into polyiodide anion [I2n+1]
− in 

the presence of P(4-VP), which promoted the condensation reaction of isatin and indole. 

The condensation of indole with isatin was more effectively explained through progressively 

adding indole by nucleophilic addition to the carbonyl group and dehydrating the addition 

product to yield the intermediate azafulvaline. The second indole molecule was then 

nucleophilically added to the azafulvaline intermediate to complete the reaction. After work-up, 

the catalyst could be readily regenerated and employed in the next runs. 
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Scheme 3. A plausible mechanism for the reaction. 

 

3. Conclusions 

In conclusion, the formation of [P(4-VPI)]+[I3]
− was demonstrated by FTIR and UV-Vis spectra 

analysis of reactants and product. It was employed as a neutral catalyst for the reaction between 

isatin and various indoles and pyrrole, affording the high yields of the 3,3-disubstituted oxindole 

derivatives. Poly(4-vinylpyridine)iodonium triiodide is highly stable, nonvolatile, and has 

significantly lower toxicity. It is demonstrated that heterogeneous polymer supported catalysts 

have a new synthetic use in organic synthesis due to their accessibility, ease of use, highly 

recyclable, mild reaction conditions, and excellent yields. 
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