Adjustment of Membership Functions, Generation and Reduction of Fuzzy Rule Base From Numerical Data

Main Article Content

Raouf Ketata
Hatem Bellaaj
Mohamed Chtourou
Mohamed Ben Amer

Abstract

In this paper we introduce a new approach for adjustment of membership functions, generation, and reduction of fuzzy rule base from data in the same time. The proposed approach consists of five steps: First, generate fuzzy rules from data using Mendel & Wang Method introduced in [1]. Second, calculate the degree of similarity between rules. Third, measure the distance between the numerical values which induces similar rules. Four, if the distance is greater than base value then merge membership functions. Finally, regenerate rules from data with new fuzzy sets. This approach is applied to truck backer-upper control and Liver trauma diagnostic. A comparative study with a simple Mendel Wang method shows the advantages of the developed approach.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ketata, R., Bellaaj, H., Chtourou, M., & Amer, M. B. (2017). Adjustment of Membership Functions, Generation and Reduction of Fuzzy Rule Base From Numerical Data. Malaysian Journal of Computer Science, 20(2), 147–169. Retrieved from http://jummec.um.edu.my/index.php/MJCS/article/view/6305
Section
Articles