
Malaysian Journal of Computer Science, Vol. 11 No. 2, December 1998, pp. 23-31

23

A FRAMEWORK FOR SOFTWARE MAINTENANCE MODEL DEVELOPMENT

Aziz Deraman
Department of Computer Science
Universiti Kebangsaan Malaysia

43600 UKM, Bangi
Selangor Darul Ehsan

Malaysia
Tel: 03-8296150
Fax: 03-8254675

email: ad@pknet.cc.ukm.my

ABSTRACT

The software maintenance process is one of the most costly
activities within information system practice. The purpose
of this paper is to address some of the difficulties in this
process, by proposing a framework for the development of
maintenance model. Essential to the software maintenance
process is an ability to understand not only the software but
the required changes as well. This can only be achieved
where the relevant knowledge is available. Based upon this
primary requirement, the proposed framework has made the
knowledge as its basis for modelling other requirements for
software maintenance model development. The framework
first identifies the three operational elements, i.e. function,
static entity and dynamic entity, required for general
software maintenance process. With respect to the
knowledge (as part of the dynamic entity components), the
framework shows how these three operational elements
should behave and interact amongst themselves to deliver a
successful software maintenance model.

Keywords: Software maintenance model, Software

maintenance process, Software knowledge,
Change request knowledge, Knowledge-base

1.0 INTRODUCTION

In many cases of human activity, when a particular activity
involves more than a reasonable amount of cost, people
start looking for the problems, which contribute to that
cost. Software maintenance is no exception to this. When
year after year, spending on software maintenance has
become increasingly dominant in data processing budgets
[1, 2], people have realised that problems in software
maintenance need to be identified and resolved. The
realisation of this fact took place as far back as the 1970s
[3], but software maintenance problems still exist.

After more than two decades of research, an effective
software maintenance model has yet to be developed. The
reason for this is the lack of a model that is proven viable
for general use. However, several suggestions have been
made as to how the software maintenance model could be
approached. The first approach is to apply a Software

Development Life Cycle (SLDC) model to construct a
model for software maintenance. This kind of model
considers software maintenance as another task of software
development. For example, [4] suggests the software

maintenance model as a model of the 2nd , 3rd , ..., nth
round of development. Basili [5], who argues that software
maintenance is a continued development, using the same
knowledge, methods and tools used for software
development, also supports this view. Later, he further
develops his view of the software maintenance model as
reuse-oriented software development. A more complicated
idea of using the SDLC to reflect the software maintenance
model is proposed by [6] using his spiral model. How
effective this type of software maintenance model is still
open for discussion. Some have argued that SDLC is not
compatible with a software maintenance model. According
to Chapin, the use of SDLC will generate an inappropriate
expectation set of metric requirements such as effort needed,
selection of tools, management support and complexity of
the relevant task [7]. Therefore, his preference is that
software maintenance should have its own software
maintenance life cycle (SMLC) model.

Another approach to modelling software maintenance is to
use the process of software maintenance itself as a starting
point for the model concerned. In this case, a number of
proposals have been published with some variations
between them. However, we have identified amongst them
some common features of the overall software maintenance
model found in the literature. These features are:

• understanding the software,
• modifying the software,
• revalidating the software.

Amongst those advocating the above model are Boehm,
Martin-McClure, Basili and Chen [1, 8, 2, 9, 35]. Martin-
McClure has further refined this model to show what has to
be done in each of the maintenance model stages (see Fig.
1). Basili’s reuse maintenance model is primarily concerned
with reusing artifacts of software products for new
requirements with appropriate modification. Parikh’s model
of maintenance focuses upon the identification of
maintenance objectives before any other maintenance task is
performed [10]. This idea can also be found in Patkau’s

Deraman

24

model in which identifying and specifying the maintenance
requirements should be accomplished first [11, 12]. Other
maintenance models focus on a specific feature of software
maintenance. For example, Sharpley proposed a model for
corrective maintenance whereby the problem encountered
be first verified and diagnosed before reprogramming and
revalidation are carried out [13].

Top-down understanding

Improve documentation

Design change/debug

Alter code

minimise side-effect

System testing

Regression testing

Change testing

Development participation

Revalidate
Software

Understanding
Software

Modify
Software

Fig. 1: A software maintenance model [8]

Another important feature of the software maintenance
model is the aspect of change impact analysis. Freedman
has discussed at a great length the potential side effects of
making changes to software [14]. In this case, Martin-
McClure, Patkou and Yau [8, 11, 15] have suggested some
analyses of the ripple effect of making changes to software.
Martin-McClure considers minimising ripple effect as a
second objective of changing program code. They urged
that the code must be fully examined beginning with the
module sharing global variables or common routines with
this module. This is specifically important for module that
is tightly coupled [16].

From the above discussion, it can be shown that existing
software maintenance practices require a more complete
model to represent various needs during software
maintenance model. These needs not only to respond to
the process of software understanding (as has been
addressed by [9]) but also to cover other problematic areas
such as the intra-maintenance communication [17] and
software maintenance resources management [18].

Therefore, it is the aim of this paper to provide a sound
framework for the development of a practical software
maintenance model within the chosen environment. In
section 2, definition that underlies the proposed framework
is presented and an explanation of several concepts
pertaining to the framework is also given. The proposal of
the framework that can be used as a basis of the
development of software maintenance model for the chosen
environment is outlined in section 3. Finally, this paper is
concluded with a summary of the contribution made from
the research.

2.0 DEFINITION

Software maintenance model development is not a trivial
task where a thorough consideration ought to be made of its
requirement as well as its long-term survival. In recognising
these needs, a framework is required prior to the
development of a relevant software maintenance model. To
ensure this framework can sustain in a fragile environment
such as software maintenance environment, the following
definitions are applied:

Definition 1:

For any software maintenance practice, the operational
elements involved can be explicitly classified into three
classes: Function, Dynamic Entity and Static Entity.

Explanation
Let E be a set of operational elements required within a
software maintenance process. Therefore,

 E = {Function, Dynamic Entity, Static Entity}.

• Function is defined as an activity to be accomplished
during the course of maintaining a software system.

• Dynamic Entity is defined as an entity within software
maintenance process that will act as an argument for the
function element. The state of this entity will change when
the appropriate function is applied to it.

• Static Entity is defined as an entity within the software
maintenance process that acts as the agent to execute a
related function.

The operational elements involved in software maintenance
must be considered so that all aspects of software
maintenance process can easily be addressed. As has been
defined, Function should be explicitly identified within the
software maintenance process so that each of this function
can be effectively performed. With each required function
is clearly defined, requirements for implementing specific
function can adequately be allocated. Furthermore, any
failure that occurs while maintaining a software system can
easily be traced based upon the identified function and
therefore appropriate action could be taken.

To support various activities of the software maintenance
process, several functions have been recognised. These
functions cover a wide spectrum of existing software
maintenance practice such as acquiring software knowledge,
and handling a change request. The following is the
definition of those functions as a basis for the proposed
framework (to be discussed in the next section):

L: a ‘Linguistic Function’ is used to map a change

request expression from one state into another;

A Framework For Software Maintenance Model Development

25

I: an ‘Implementation Function’ is used to
modify the existing software system to fulfil a
particular need for change;

B: a ‘Backtracking Function’ is used to check for
similarity of a new change request against the
old one;

A: an ‘Abstraction Function’ is used to abstract
or capture a set of information about software
(or software knowledge) from a source code;

H: a ‘Human Interaction Function’ is used to
communicate with the captured software
knowledge as well as to modify the
knowledge.

Therefore,

 Function = {L, I, B, A, H}

When function is applied in software maintenance, the state
of a relevant dynamic entity will change. This entity needs
to be defined clearly because software maintenance process
may involve various types of activities which may also
require different types of maintenance. As a consequence,
the affected dynamic entity may also affect other dynamic
entities that must be taken into account as well. To fulfil
this requirement, we have identified the following as
dynamic entities:

Therefore,

 Function = {L, I, B, A, H}

When function is applied in software maintenance, the state
of a relevant dynamic entity will change. This entity needs
to be defined clearly because software maintenance process
may involve various types of activities which may also
require different types of maintenance. As a consequence,
the affected dynamic entity may also affect other dynamic
entities that must be taken into account as well. To fulfil
this requirement, we have identified the following as
dynamic entities:

Si: denotes an application system at the state of

time i where i=0,1,2,...,n.

Cj,t: denotes the jth change request is submitted

at the state of time i (where i always has a
value of j-1), and the change request is in
the state of l expression. Here, t=0,1,2,...,m
where if t→0, the change request is in the
form close to a user’s expression, and if
t→m, the change request is in the form
close to the maintainer’s expression.

Ki,l: denotes software knowledge K at the state

of time i where i=0,1,2,...,n and at the detail
level t where t=0,1,2,..,m. Here, when t→0,
it shows that knowledge is in the form
closed to a source code and as the value of l
increases towards m, the software

knowledge K will gradually change its form
into a higher level of interpretation element
as perceived by a maintainer (examples of
these elements are data and control flow,
module definition and I/O structures).

Therefore, a dynamic entity set can be summarized as:

Dynamic Entity = {Si, Cj,t, Ki,t }

Finally, this definition has explicitly identified the need for a
static entity to support software maintenance process. Static
entity has been defined to act as an agent for executing a
particular function. Amongst the agents required in general
software maintenance process are user, maintainer,
management and implementor. Therefore, a static entity set
can be summarised as:

Static Entity = {User, Maintainer, Management,
Implementor}

Definition 2:

In order to facilitate a functional interaction amongst the
operational elements within software maintenance practice,
there must exist a single central point of reference whereby
it can be referred to by all elements.

Amongst the persistent software maintenance problems are
that of ‘information gap’ [19] and that of ‘communication
breakdown’ [17] which could be generalised as ‘intra-
maintenance communication’ problems. Therefore, this
definition has highlighted the need for a specific medium to
facilitate this intra-maintenance communication so that the
adopted software maintenance model delivers the expected
result. For the framework proposed in this paper, software
maintenance knowledge has been chosen as the sole
candidate to represent the central point of reference.

Definition 3:

The only feasible approach to enforce software maintenance
knowledge as a central point of reference is through
knowledge-based representation approach.

Software maintenance knowledge is largely scattered across
the software maintenance environment and therefore
involves difficulties in using that knowledge [14, 20, 21].
This definition has made a clear requirement for the
scattered software knowledge to be gathered and represented
in a knowledge-base so that the knowledge is more
organised and centralised. Many authors (for example, see
[22, 23, 24, 25, 26], have addressed the importance of a
knowledge-based approach to support software
maintenance. Therefore, it is the most appropriate to use a
knowledge-base as a tool for representing a central point of
reference to facilitate intra-maintenance communication.

Deraman

26

Definition 4:

Computer aided support for software maintenance is
inevitable.

The importance of computer aided software maintenance
tools for software maintenance is as important as CASE
tools that generally aims to make the practice of software
development more reliable and productive [27]. For
example, it is costly and time consuming to manually
generate appropriate knowledge from operational source
code [28]. Therefore, this work must be supported by a
computer-aided tool [29]. The discussion of various types
of software maintenance tools required for software
maintenance can be found in [30]. Therefore, this
definition has attempted to include the integration of a
computer-aided support for effective software maintenance
model.

3.0 A FRAMEWORK FOR SOFTWARE MAIN-

TENANCE MODEL

The heart to the framework is the establishment of a central
reference point for the various entities involved in the
software maintenance model. Software maintenance
knowledge has been chosen as the sole candidate to
represent this central reference point which comprises of
two main knowledge components.

The first component is software knowledge. As has been
stated frequently in the literature, the available software
knowledge is not always reliable except for the operational
source code [31, 32, 33, 34]. However, the source code
alone is practically difficult to be used as reference point for
software knowledge. Therefore, the framework suggests
that a higher-level of software knowledge must be derived
from the source code. The derived knowledge can be
further enhanced to include some higher semantic
interpretation.

The other component is change knowledge. This
knowledge is gradually established as the software system
evolves and there are requests for change. In this
framework, all the change knowledge must be kept
historically for various reasons. One of the main reasons is
that the historical knowledge can be used as a reference
point for a new change request before it is submitted and
hence authorised. The framework also places a greater
emphasis on the need for all the changes to be clearly
visualised in software knowledge. To achieve this, the new
software knowledge, which originated from the
implemented changes, once again has to derive from the
affected source code. In this way, the reliability and
integrity of the software maintenance knowledge is
maintained throughout the life of software system.

Considered to be one of the problematic areas in software
maintenance process but frequently ignored is the process of
handling a change request. As this will involve much of the
maintenance personnel effort, the framework proposed here
has made this process more visible to every entity involved.
In this case, all the changes are submitted according to a
prescribed format whereby the terminology used must
conform to the defined software knowledge. To further
enhance understanding of the required changes, the
personnel involved are allowed to iteratively refine the
change descriptions until a satisfactory level is achieved.
Improvement in communication amongst maintenance
personnel is made possible by enforcing a formalism for
change request descriptions. This is done gradually as the
intended change approaches the implementation stage. In
many of these activities, not only previous change requests
can be examined, but the available software knowledge can
also be interrogated to finally produce a better-formalised
change request description.

Finally, a CASM (Computer-Aided Software Maintenance)
toolset is required to complete the proposed framework. For
example, the software knowledge derivation is unlikely to be
possible without some degree of automation. Similarly,
software maintenance knowledge must be strongly
represented and supported by an effective retrieval tool so
that knowledge interrogation is fruitful.

3.1 Software Knowledge

In this framework, it is assumed that initially the only
reliable source of software knowledge is a set of source code
programs. Using the given definition, this software
knowledge is represented as K0,t=P, which is in the form of

a programming language LP (that is why a special value for

t is given). Therefore we can apply an Abstraction function
A to transform this low-level knowledge into a higher one
and can be shown as:

A (K0,P) ⇒ K0,t ... (1)

The Abstraction function A is considered to have a limited
power for generating a precise and comprehensive software
knowledge since it is meant to be fully automatic.
Therefore, the resultant knowledge still lacks semantic
interpretation. To enrich the knowledge K0,t with higher

level interpretation, we use a Human Interaction function H
to complete the transformation. In this case, H will provide
some high level interaction whereby suggestions of the
required knowledge are made to the maintainer as well as to
modify relevant knowledge as instructed again by a
maintainer. Thus,

H (K0,t) ⇒ K0,t+1 ... (2)

A Framework For Software Maintenance Model Development

27

This process is an iterative one and can be repeated until
satisfactory level of knowledge is acquired. At this stage
we can see that t → m, therefore,

H (K0,t+p-1) ⇒ K0,t+p ,

 where t+p → m ... (3)

Furthermore, when a software system is in the state i (Si),

we will have the relevant software knowledge Ki,t.

However, when the (i+1)th change request is implemented,
the knowledge Ki,l no longer represents the true software

knowledge at the state (i+1), i.e. Si+1. Therefore, this

knowledge at the state (i+1) is presented as Ki+1,δt, i.e:

Ki+1,δt = Ki,t ... (4)

Ki+1,δt has to be transformed into the true software

knowledge of the existing system version (i+1). Therefore,
the same Abstraction function is used to automatically
abstract some of the knowledge resided in the new version
of the source code.

A(Ki+1,δt) ⇒ Ki+1,t ... (5)

Similarly, equation (2) can be applied repeatedly to the
knowledge produced by equation (5) so that higher level
interpretation of the change can be reflected in the software
knowledge. Thus,

H (Ki+1,t) ⇒ Ki+1,t+1
 .
 .
 (6)
 .

H (Ki+1,t+p-1) ⇒ Ki+1,t+p,

 where t+p → m.

3.2 Change Request Knowledge

Within the proposed framework, a change request
knowledge is assumed to be an important part of overall
software maintenance knowledge. Therefore, the change
request knowledge has to be derived to the extent that it is
usable for implementation as well as a reference point for
future maintenance purposes. It is our intention here to
show the modelling process of a change request evolution.

In a typical software maintenance practice, an implemented
change request can cause a new version of software system
to be produced. However, in an optimised situation, one
can generally gather several change requests into one
implementation unit and hence will also produce one new
version of software system. Therefore, two possible
relationships can be established as shown in Fig. 2.

One change
request

Many change
requests

New
Software
Version

one : one

many : one

Fig. 2: Relationship between Change Request
and Software Version

To accommodate this new requirement (relationship of
Many Change Requests → One New Software Version), we
have to extend the definition of a change request

representation by considering the jth change request is as a
set of different change requests, i.e.:

Cj,t = ∑
k=1

r
C j(k),t

 ≅ {Cj(1),t + Cj(2),t +... + Cj(r),t} ... (7)

 (r will have a minimum value of 1)

Initially, a change request is in a user-oriented form and can
be represented as Cj(k),t=0. However, users can use a given

Linguistic function L which facilitates a mapping process of
a change request into one step closer to the software
knowledge domain or maintainer’s language. This process
can be repeatedly applied as follows:

L(Cj(k),t) ⇒ Cj(k),t+1

 .

 (8)
 .

L(Cj(k),t+p-1) ⇒ Cj(k),t+p

Satisfied with his change request expression, a user can now
submit the change request. The maintainer then applies a
similar process of invoking a Linguistic function L to map
the change request description more closely to his language
(in terms of software knowledge domain). However, within
this process, a user or a maintainer can also alternatively use
the L function as a medium for them to communicate if there
are queries which arise that need to be clarified. Therefore,

L(Cj(k),t+p) ⇒ Cj(k),t+p+1
 .

 .

 (9)

L(Cj(k),t+q-1) ⇒ Cj(k),t+q ,

where t+q→ m.

Deraman

28

The above transformations are also true when (in practice) a
maintainer issues a change request for example. Perhaps,
the maintainer will express the intended change request
straight into his term, i.e. Cj(k),t where t → m. Therefore,

in this case the function L will be less useful.

Sometimes, a submitted change request can be found not to
be unique. Therefore, this framework provides two stages
of checking. First it checks the change request within a
user’s domain. Having an intention to submit a change
request, users can always check the intended change request
against previously submitted requests. This process will
reveal whether the change request is redundant, partly
redundant or a new one. By definition, this process is
accomplished by means of a Backtracking function B. If

we have the i(k)th change request, then it must be checked
against all the other change requests, i.e.:

Ci(k),t is checked against

 {Ci(h),t, Ci-1(h),t, ..., C2(h),t, C1(h),t}

 for all h,

 where i(h) ≠ ik).

Using a function B, this process can be represented as:

B(Ci(k),t, Cj(h),t) =

-1 if Ci(k),t = Cj(h),t ;

0 if Ci(k),t ≈ Cj(h),t ; ... (10)

+1 if Ci(k),t ≠ Cj(h),t ,

for all h,
where h ≠ k, for i = j
and j = i, i-1, ... , 1.

The above equation shows that the function B will have a

value of -1 if the ith change request is similar to the
previous change request. B is 0 when some of the change

requests in the set of ith change request are found similar to
the previous change requests and B will have a value of +1
if the change request is absolutely a new one. Equation
(11) is used to show the checking against one of the
previous change request. To represent the whole checking
process, i.e. for j, (j-1),...,2,1, then, the equation (10) can be
generalised using a product notation as:

 1

ΠB (Ci(k),t Cj(h),t), ... (11)

j=i for all h, where h ≠ k, for i = j

Equation (11) will have a negative value if the ith change
request is actually similar to one of the previous change
request. A change request has to be resubmitted if equation
(11) has a zero value because the change request is partly
similar with previous change requests. Only a positive

value of equation (11) will indicate that the i(k)th change
request is unique.

The second check is made within the maintainer’s domain.
Here, the maintainer will ensure the uniqueness of a change
request by comparing it with the previous change requests.
As a result, the intended change request may be found
totally or partially redundant or probably a unique one. The
checking process shown in (10) and (11) is also applicable
within a maintainer’s domain where t → m.

Finally, only the change request that passed the two checks
will be used to modify code. The various details of the
change request produced by the function L will actually be
used during actual code modification. Within our
framework, this process is accomplished by a function I and
can be shown as:

 r m

I (Si-1, ∑ ∑ Ci(h),t) ⇒ Si ... (12)
 h=1 t=0

The first summation is used to collect all ith change request
elements and the second summation is used to show the
various details of the change request specification for system
S.

3.3 Dependency of Knowledge Components

During the software maintenance process, support from both
software and change request knowledge is required, with
each knowledge component being dependent on one
another. Within the given framework, the existing software
knowledge Ki,δt can be used to facilitate a process of

expressing a change request Ci(k),t by a user as well as a

maintainer. In this case both of them will use the software
knowledge Ki,δt as a repository for supplying them with the

appropriate knowledge that relevant for the change request
description. Using the given notation, this process can be
shown as:

S
i −−−−1

Ci(h), t →0

Ki, δt
.....(13)⇑

L

≅ Iterative function

Ci(h), t →m

L

From the opposite perspective, the execution of an
Implementation function I for a change request Ci,l , in turn

will trigger the execution of other functions to reflect the
implemented change in the software knowledge Ki,δt. This

repository is then will change into a new state of Ki,t

⇔

A Framework For Software Maintenance Model Development

A HK
i, δt K

i,t→m

A H
K

i+1, δt K
i+1,t→m

Si-1 C

I

i, t→0⇔ C
i, t→mL

Si

B

S
i-2

C

I

i-1,t →0⇔
C

i-1,t →mL

B

Fig. 3: Functional interaction within a Framework of Software Maintenance Model

Here, both Abstraction and Human Interaction (A and H)
functions will be invoked and is shown as:

S KK δ H

Therefo
consoli
of the
model.

4.0 C

In this
softwar
support

this problem we have presented a framework for software
maintenance model development. Central to this framework
is the creation of a software maintenance knowledge-base as
a common point of reference for software maintenance
activities. Two main components of this knowledge are
i⇔
29

i, t → m

.....(14)

i, t A

I

≅ FunctionI

re, by applying representation (13) and (14) into a

dated model, we can have an overall graphical view
proposed framework for software maintenance

 This is shown in Fig. 3.

ONCLUSION

paper we have argued that one of the recurring
e maintenance problems is that of inadequate
 of proper software maintenance model. To solve

identified, i.e. software knowledge and change request
knowledge. Therefore, any committed software change
must be confirmed and validated within the knowledge-base
whereby a better change management control can be
realised. Implemented change is also controlled over the
knowledge-base so that integrity and reliability of the
knowledge is guaranteed. Any reference to the knowledge-
base will reflect the current state of the software.

For a practical application of the model, its strength very
much relies on how far we can automate the process. For
example, implementation of the knowledge-base requires a
fast and reliable algorithm and this will increase the cost of
the development. Therefore, this model is economically
applicable only for a big MIS application. Nevertheless,
with the proposed framework, the process of deriving an
appropriate software maintenance model within the chosen
environment could be made easier.

Deraman

30

REFERENCES

[1] B. W. Boehm, “Software Engineering”, IEEE

Transaction on Computers, Vol. 25, December 1976,
pp. 1226-1241.

[2] G. Parikh, “The World of Software Maintenance”, in

Techniques of Program and System Maintenance, G.
Parikh (Ed.), Little, Brown and Company, Boston,
MA, 1982, pp. 9-13.

[3] E. B. Swanson, “The Dimension of Maintenance”,

Proceeding of 2nd International Conference on
Software Engineering, San Francisco, 1976, pp. 492-
497.

[4] J. R. McKee, “Maintenance as a Function of

Design”, AFIPS National Conference Proceeding,
Vol. 53, 1984, pp. 187-193.

[5] V. R. Basili, “Viewing Maintenance As Reuse-

Oriented Software Development”, IEEE Software,
January 1990, pp. 19-25.

[6] B. W. Boehm, “A Spiral Model of Software

Development and Maintenance”, IEEE Computer,
Vol. 21, No. 5, May 1988, pp. 61-72.

[7] N. Chapin, “Software Maintenance Life Cycle”,

Proc. of Conference on Software Maintenance,
Computer Soc. Press, IEEE, New York, 1988, pp. 6-
13.

[8] J. Martin and C. L. McClure, Software Maintenance:

The Problem and Its Solutions, Prentice-Hall, 1983.

[9] S. Chen, K. G. Heisler, W. T. Tsai, X. Chen and E.

Leung, “A Model for Assembly Program
Maintenance”, Software Maintenance: Research and
Practice, 1990, pp. 3-32.

[10] G. Parikh, “Structured Maintenance: The

Warnierr/Orr Way”, Computerworld: IN DEPTH
Section, 1981.

[11] B. H. Patkau, A Foundation for Software

Maintenance, Ph.D. Thesis, Department of Computer
Science, University of Toronto, December 1983.

[12] S. L. Pfleeger and S. A. Bohner, “A Framework for

Software Maintenance Metrics”, Proceeding of
Conference on Software Maintenance - Computer
Soc. Press, IEEE, New York, 1990, pp. 320-327.

[13] Sharpley, “Software Maintenance Planning for

Embedded Computer Systems”, Proceeding of the
IEEE COMPSAC, November 1977, pp. 520-526.

[14] D. P. Freedman and G. M. Weinberg, “A Checklist

for Potential Side Effect of a Maintenance Change”,
Techniques of Program and System Maintenance, G.
Parikh (ed.), Ethotech Inc., 1980, pp. 61-68.

[15] S. S. Yau and J. S. Collofello, “Some Stability

Measures for Software Maintenance”, IEEE
Transaction on Software Engineering, Vol. 6, No. 6,
November 1980.

[16] W. Stevens, G. Meyer and L. Constantine,

“Structured Design”, IBM System Journal, Vol. 13,
No. 3, 1974, pp. 115-139.

[17] P. J. Layzell and L. Macaulay, “An Investigation into

Software Maintenance - Perceptions and Practices”,
Proc. of Conference on Software Maintenance -
Computer Soc. Press, IEEE, New York, 1990, pp.
130-140.

[18] R. B. Grady, “Measuring and Managing Software

Maintenance”, IEEE Software, Vol. 4, No. 9,
September 1987.

[19] W. M. Osborne, “Building and Sustaining Software

Maintainability”, Proceeding of Conference on
Software Maintenance -1987, Computer Soc. Press,
IEEE, New York, 1988, pp. 13-27.

[20] N. F. Schneidewind, “Quality Metrics Standard

Applied to Software Maintenance”, Proceeding on
Computer Standards Conference, Addendum, IEEE
Computer Soc., May 1986.

[21] N. F. Schneidewind, “The State of Software

Maintenance”, Transaction on Software Engineering,
Vol. 13, No. 3, March 1987, pp. 303-310.

[22] F. J. Lukey, “Understanding and Debugging

Programs”, International Journal of Man-Machine
Studies, Vol. 12, 1980, pp. 189-202.

[23] E. Soloway and W. L. Johnson, “PROUST:

Knowledge-Based Program Understanding”, IEEE
Transaction on Software Engineering, Vol. 11, No. 3,
March 1985, pp. 267-275.

[24] N. W. Wilde and S. M. Thebaut, “The Maintenance

Assistant: Work in Progress”, SERC-TR-10-F, CIS
Department, University of Florida, September 1987.

[25] M. T. Harandi and J. Q. Ning, “Knowledge-Based

Program Analysis”, IEEE Software, January 1990, pp.
74-81.

A Framework For Software Maintenance Model Development

31

[26] P. Benedusi, V. Benvenuto and M. G. Caporaso,
“Maintenance and Prototyping at the Entity-
Relationship Level: a Knowledge-Based Support”,
Proceeding of Conference on Software Maintenance
- Computer Soc. Press, IEEE, New York, 1990, pp.
161-169.

[27] C. L. McClure, CASE is Office Automation, Prentice

Hall, Englewood Cliffs, New Jersey, 1989.

[28] G. Richardson and E. D. Hodil, “Redocumentation:

Addressing the Maintenance Legacy”, AFIPS 1984
National Computer Proceedings, AFIPS Press,
Arlington, Virginia, May 1984, pp. 203-208.

[29] P. Antonini, P. Benedusi, G. Cantone and A.

Cimitile, “Maintenance and Reverse Engineering:
Low-Level Design Document Production and
Improvement”, Proc. of Conference on Software
Maintenance - Computer Soc. Press, IEEE, New
York, 1987, pp. 91-100.

[30] A. B. Deraman, and P. J. Layzell, “Computer-Aided

Software Maintenance: A Classification and
Analysis”, Malaysian Journal of Computer Science,
Vol. 6, December 1993, pp. 21-42.

[31] H. M. Sneed, “SoftDoc - A System for Automated

Software Static Analysis and Documentation”, Proc.
of ACM Workshop on Measurement and Evaluation
of Software Quality, (ACM Sigmetrics), Vol. 10, No.
1, 1981, pp. 173-178.

[32] C. Wilson and L. J. Osterweil “OMEGA - A Data
Flow Analysis Tool for the C Programming
Language”, IEEE Transaction on Software
Engineering, Vol. 11, No. 9, September 1985.

[33] D. R. Kuhn, “A Source Code Analyser for

Maintenance”, Proc. of Conference on Software
Maintenance - Computer Soc. Press, IEEE, New
York, 1987, pp. 176-180.

[34] L. D. Landis, P. M. Hyland, A. L. Gilbert and A. J.

Fine, “Documentation in a Software Maintenance
Environment”, Proceeding of Conference on Software
Maintenance - Computer Soc. Press, IEEE, New
York, 1988, pp. 66-73.

[35] M. K. Khan, M. A. Rashid and W. N. Lo, “A Task-

Oriented Software Maintenance Model”, Malaysian
Journal of Computer Science, Vol. 9, No. 2,
December 1996, pp. 36-42.

BIOGRAPHY

Aziz Deraman obtained his Master degree in Computer
Science from Glasgow University in 1984 and Ph.D in
Software Engineering from UMIST in 1992. Currently he
is an Associate Professor at the Department of Computer
Science and Deputy Director for the Computer Centre,
Universiti Kebangsaan Malaysia. His research interests
include software maintenance management, IT strategic
planning, software testing and temporal DB and multimedia
engine development for education.

	Aziz Deraman
	Department of Computer Science
	43600 UKM, Bangi
	ABSTRACT
	Explanation
	
	
	Definition 2:

	Fig. 3: Functional interaction within a Framework of Software Maintenance Model
	
	
	REFERENCES
	BIOGRAPHY

