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ABSTRACT 

 

The Antlion Optimization (ALO) algorithm is a meta-heuristic optimization algorithm based on the hunting of ants by 

antlions. The basic inadequacy of this algorithm is that it has long run time because of the random walk model used 

for the ant's movement. We improved some mechanisms in ALO algorithm, such as ants' random walking, 

reproduction, sliding ants towards antlion, elitism, and selection procedure. This proposed algorithm is called 

Improved Antlion Optimization (IALO) algorithm. To show the performance of the proposed IALO algorithm, we used 

different measurement metrics, such as mean best, standard deviation, optimality, accuracy, CPU time, and number 

of function evaluations (NFE). The proposed IALO algorithm was tested for different benchmark test functions taken 

from the literature. There are no studies regarding time analysis of ALO algorithm found in the literature. This study 

firstly aims to demonstrate the success of the proposed IALO algorithm especially in runtime analysis. Secondly, the 

IALO algorithm was also applied to the Quadratic Assignment Problem (QAP) known as a difficult combinatorial 

optimization problem. In QAP tests, the performance of the IALO algorithm was compared with the performances of 

the classic ALO algorithm and 14 well-known and recent meta-heuristic algorithms. The results of the benchmark test 

functions show that IALO algorithm is able to provide very competitive results in terms of mean best/standard 

deviation, optimality, accuracy, CPU time and NFE metrics. The CPU time results prove that IALO algorithm is faster 

than the classic ALO algorithm. As a result of the QAP tests, the proposed IALO algorithm has the best performance 

according to the mean cost, worst cost and standard deviation. The source codes of QAP with the proposed IALO 

algorithm are publicly available at https://github.com/uguryuzgec/QAP-with-IALO. 
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1.0 INTRODUCTION 

 

The hunting techniques of animals have always attracted the attention of scientists with their pitfalls and behaviors 

that they display. Antlion is one of these creatures, and the hunting technique it uses during the larval period was 

presented in 2015 by Seyedali Mirjalili [1]. Antlion Optimization Algorithm (ALO) was constructed on this hunting 

strategy. The ALO algorithm is principally based on the hunting strategy of antlions. It consists of five main steps: 1) 

ants' random walking; 2) building trap; 3) trapping in the antlion’s pits; 4) sliding ants towards antlion; and 5) catching 

the prey and rebuilding the pit. There are some studies reported in the literature regarding applications or improvement 

of the ALO algorithm. Some of these are: PID controller parameters design [2], optimal non-convex and dynamic 

economic load [3], tournament selection based ALO algorithm for solving parallel machine scheduling [4] and 

quadratic assignment problem [5], optimal flexible process planning [6], optimal route planning for unmanned aerial 

vehicle [7], multi objective optimal generation scheduling [8], automatic generation control of interconnected power 

system [9], determining the optimal coefficients of IIR filters [10], and optimization of parameters on neuro-fuzzy 

inference system [11], [12]. 

 

Even though ALO algorithm gives effective results for different optimization problems on engineering area, it has 

some limitations. The main deficiency of ALO algorithm is the long runtime especially because of the random walking 

model. In this study, random walking distance was changed in model ant’s movement in order to improve the ALO 

algorithm. The random walk distance is used as twenty percent of maximum iteration instead of the maximum iteration 

number in the original ALO algorithm. Furthermore, we added some new movements between lower and upper 

boundaries around the antlion into the phase of trapping antlion pits to ensure that ants walk more effectively around 

the selected antlion in the search space. In the improved ALO algorithm (IALO), the boundary checking process and 

the procedure about the catching prey and rebuilding the pit were improved. 

 

The quadratic assignment problem (QAP) which is one of the most difficult combinatorial optimization problems is a 

facilities allocation problem. These facilities are located in many places that are already known and at the least costly 
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ones. QAP was first presented in 1957 by Koopmans and Beckmann [13]. The cost function is the sum of the costs 

for each facility. The problem is solved by minimizing the total cost. The main reason for preferring QAP in this study 

is that it is a difficult optimization problem, and QAP has been solved with various optimization methods. In 1977, 

the location problem of the hospital departments was formulated with the QAP, and solved by heuristic method [14]. 

Experimental solution strategies of QAP were given by [15]. Then, simulated annealing algorithm was used for 

quadratic assignment problems [16]–[19]. The comparison of meta-heuristic algorithms and their application to QAP 

were presented in [20]–[23]. Afterwards, genetic algorithm were used to solve QAP [24]–[27]. In 1997, simulated 

annealing and genetic algorithm performance on QAP was proposed, followed by intelligent local search strategies in 

order to solve QAP in 1998 [28]. Ant colony optimization method were used to solve QAP [29][30]. Tabu search 

algorithm was applied to solve QAP [31]. In [32], Hafiz et al., presented the implementation of PSO variants for QAP. 

Another study on QAP is a hybrid method including tabu search and biogeography based optimization algorithms 

[33]. Chmiel et al. [34] compared meta-heuristic algorithms inspired by nature for quadratic assignment problem.  

 

As the first objective of this study, we introduce an improved antlion optimization algorithm (IALO) to defeat the 

drawback of the original ALO algorithm's long runtime. The second aim of this study is to apply the IALO algorithm 

to the Quadratic Assignment Problem (QAP), which is known as a difficult combinational optimization problem. In 

Mirjalili's study [1], the algorithm's analysis was not carried out in terms of the CPU time or number of function 

evaluation. For this reason, firstly, ten benchmark functions with each having different characteristic were taken from 

the literature to evaluate the performance of the proposed IALO algorithm. In this stage, the IALO algorithm was 

compared with the well-known meta-heuristic algorithms in terms of mean best value, CPU time, number of function 

evaluations (NFE), optimality, and accuracy metrics. Then, the proposed IALO algorithm was adapted for QAP and 

its performance was compared with the original ALO algorithm, Genetic Algorithm (GA)[35], Firefly Algorithm (FA) 

[36], [37], Particle Swarm Optimization (PSO) [38], [39], Invasive Weed Optimization (IWO) [40]–[42], Imperialist 

Competitive Algorithm (ICA) [43], [44], Shuffled Frog Leaping Algorithm (SFLA) [45], [46], Biogeography-Based 

Optimization (BBO) [47], [48], Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [49], [50], Harmony 

Search Algorithm (HSA) [51], [52], Cultural Optimization Algorithm (COA) [53], [54], Gray Wolf Optimization 

(GWO) [55], Dragonfly Optimization Algorithm (DA) [56], Grasshopper Optimization Algorithm (GOA) [57] and 

Moth-Flame Optimization (MFO) [58].  

 

The rest of the paper is organized as follows: Section 2 presents the introduction of the original ALO algorithm. The 

proposed IALO algorithm and its novelty are explained in Section 3. In Section 4, the basic information about the 

quadratic assignment problem (QAP) is given briefly. For the benchmark and QAP tests, the performance of the 

proposed IALO algorithm is discussed in Section 5. Finally, in the last section, the conclusion and some suggestions 

are made for future studies. 

 

2.0 ANTLION OPTIMIZER (ALO) 

 
This section consists of the basic mechanisms used in the classic Antlion Optimization (ALO) algorithm. There are 

two important stages in the life cycles of antlions, the periods of larval periods and the periods of adulthood. ALO 

algorithm is based on the hunting tactic they use to feed during the larval periods of antlions. These hunting behaviors 

are quite unique and take place in a great mathematical structure. First of all, the antlions spiral into a cone-shaped 

trap that they pile themselves up at any place in a land of ants. To prevent the ants from coming out of this trap, they 

throw sand to the bottom of the trap, and eventually swallow the ants. After each hunt, they prepare the trap again for 

a new hunt. Fig. 1 illustrates the antlion’s hunting strategy.  

 

 
Fig. 1: Antlion’s trap [1]. 
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The mathematical modeling of this interesting and unique hunting technique is briefly given below. After randomly 

selecting the first positions of ants and antlions in search space, random walks begin. The mathematical model of these 

walks is as follows: 

 

𝑋(𝑡) = [0, 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑡1) − 1), 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑡2) − 1),⋯ , 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑡𝑛) − 1)]               (1) 

 

where n is the maximum number of iteration, cumsum denotes the cumulative sum, t is the step of random walk, and 

r(t) is the stochastic function as defined: 

 

𝑟(𝑡) = {
1 𝑖𝑓 𝑟𝑎𝑛𝑑 > 0.5
0 𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 0.5

                     (2) 

 

In order to keep random walks of ant in the search space, it has to be min-max normalized by the following equation: 

 

𝑋𝑖
𝑡 =

(𝑋𝑖
𝑡 − 𝑎𝑖)(𝑑𝑖

𝑡 − 𝑐𝑖
𝑡)

𝑏𝑖 − 𝑎𝑖
+ 𝑐𝑖

𝑡     (3) 

 

where i is value of the variable number, t is the iteration number, a is the minimum value of the random walk (𝑎 =
min (𝑋)), b is the maximum value of the random walk (𝑏 = max(𝑋)), c stands for the lower value of the dynamic 

boundary around the antlion, d stands for the upper value of the dynamic boundary around the antlion. 

 

When the ants fall down, the antlion starts throwing sand out of their way so they start sliding towards the bottom. In 

this way, the walks of the ants are affected by the antlion. The following math mode explains this situation. 

 

𝑐𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑖

𝑡 + 𝑐𝑡                      (4) 

𝑑𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑖

𝑡 + 𝑑𝑡                      (5) 

𝑐𝑡 = 𝑐𝑡 . 𝐼−1                       (6) 

𝑑𝑡 = 𝑑𝑡 . 𝐼−1                       (7) 

 

where 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑖
𝑡  is the position of the selected i-th antlion at t-th iteration, and I is the sliding ratio that can be changed 

in following conditions: 

 

𝐼 =

{
  
 

  
 
1 + 106𝑡/𝑇𝑚𝑎𝑥 𝑖𝑓 0.95𝑇𝑚𝑎𝑥 < 𝑡 < 𝑇𝑚𝑎𝑥
1 + 105𝑡/𝑇𝑚𝑎𝑥 𝑖𝑓 0.9𝑇𝑚𝑎𝑥 < 𝑡 < 0.95𝑇𝑚𝑎𝑥
1 + 104𝑡/𝑇𝑚𝑎𝑥 𝑖𝑓 0.75𝑇𝑚𝑎𝑥 < 𝑡 < 0.9𝑇𝑚𝑎𝑥
1 + 103𝑡/𝑇𝑚𝑎𝑥 𝑖𝑓 0.5𝑇𝑚𝑎𝑥 < 𝑡 < 0.75𝑇𝑚𝑎𝑥
1 + 102𝑡/𝑇𝑚𝑎𝑥 𝑖𝑓 0.1𝑇𝑚𝑎𝑥 < 𝑡 < 0.5𝑇𝑚𝑎𝑥

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                        (8) 

 

where 𝑇𝑚𝑎𝑥 is the maximum iteration. After hunting, antlions update their positions with the positions of ants 

according to fitness values. 𝑅𝐴
𝑡  is antlion selected by roulette wheel method and 𝑅𝐸

𝑡  is elite antlion are obtained by 

Eq.(3) for each iteration. The ants are positioned around the elite antlion and the antlion selected by roulette wheel 

method with the following mathematical model. 

 

𝐴𝑛𝑡𝑖
𝑡 =

𝑅𝐴
𝑡 + 𝑅𝐸

𝑡

2
 (9) 

 

This interesting hunting mechanism inherent in antlions was discovered by Mirjalili and introduced to the literature 

in 2015 [1]. The pseudocode of the original ALO algorithm is given in Fig. 2. 
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Fig. 2: Pseudocode of the original ALO algorithm. 

 

3.0 IMPROVED ANTLION OPTIMIZER (IALO) 

 
The antlion algorithm reaches the optimal point later than other algorithms and does not give many good results in 

terms of accuracy. In the original ALO algorithm, the random walk model used for the movement of ants in the search 

space works as many as the number of ants in the population for the elite antlion and the antlion selected by the roulette 

wheel method in each iteration step. Since the size of each random walk model is the maximum iteration, these 

operations both slow down the algorithm and occupy too much memory unnecessarily. For this reason, the first 

proposed development in the antlion algorithm is achieved by reducing the size of the random walk. We conducted 

experiments with different random walk model sizes and observed that below 20 percent of the maximum iteration, 

the exploration and exploitation performance of the algorithm decreased. Therefore, we took the size of the random 

walk model as 20% of the maximum iteration number in this study.  

 

The antlion, chosen by the roulette wheel, does not make any progress for the negative fitness values, and after a 

certain period of time, the same antlion in each iteration is selected. To solve it, the magnitudes of the fitness values 

have been entered on the roulette wheel, preventing the same selection every time for negative fitness values. 

 

At the end of the algorithm, the elite antlion is updated; ant and antlion populations are combined and ranked according 

to their fitness values. Thus, half of the combined population is taken as antlion positions for the next iteration. 

Neglected ants are supposed to be eaten by antlions. Here, the novelty is that instead of combining and sorting the 

populations, ants and antlion’s fitness values are compared for each pair of ant and antlion, and if the ant’s fitness 

value is better than antlion’s fitness, antlion’s position is updated as ant’s position. 

 

Another novelty is related to the falling ants and ants out of search space. The falling ants are shifted at a certain shift 

rate, and these ratios have been modified to hunt the ants easier so that the accuracy of the algorithm is increased. 

Secondly, the ants outside the search space are left at the border in the ALO algorithm, and by changing this, the ants 

outside the border are moved to random positions in the search space. All these developments are explained with the 

following pseudocode. 

 

Pseudocode of the Improved Antlion Optimization Algorithm (IALO): 

 

Input: Fitness function, ants and antlions, maximum iteration number, population size. 

Output: The elite antlion position and its fitness value. 

   Initialize antlions’ positions. 

   Calculate fitness values of antlions by using objective function. 

   Sort fitness values and save best antlion. 

   while (𝑖𝑡𝑒𝑟 < 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟) and (|𝑓𝑏𝑒𝑠𝑡 − 𝑓𝑤𝑜𝑟𝑠𝑡| < 𝑉𝑇𝑅) 
       𝑋(𝑡) = [0,⋯ , 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑡𝑛) − 1)], 𝑛 = 1,2,⋯ ,𝑀𝑎𝑥_𝑖𝑡𝑒𝑟/5                  (10) 

       for every ant 
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  Select antlion by roulette wheel method for building trap. 

  
|𝑓(𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑖

−1)|

∑ |𝑓(𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
−1)|𝑛

𝑗=1

, 𝑖 = 1,2,⋯ , 𝑛               (11) 

  Slide randomly walking ants in trap. 

𝑐𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑖

𝑡 + 𝑐𝑡

𝑑𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑖

𝑡 + 𝑑𝑡
}  𝑖𝑓 0.75 < 𝑜𝑝𝑡𝑖𝑜𝑛 < 1                (12) 

𝑐𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑖

𝑡 − 𝑐𝑡

𝑑𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑖

𝑡 − 𝑑𝑡
}  𝑖𝑓 0.5 < 𝑜𝑝𝑡𝑖𝑜𝑛 < 0.75                (13) 

𝑐𝑖
𝑡 = −𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑖

𝑡 + 𝑐𝑡

𝑑𝑖
𝑡 = −𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑖

𝑡 + 𝑑𝑡
}  𝑖𝑓 0.25 < 𝑜𝑝𝑡𝑖𝑜𝑛 < 0.5                (14) 

𝑐𝑖
𝑡 = −𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑖

𝑡 − 𝑐𝑡

𝑑𝑖
𝑡 = −𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑖

𝑡 − 𝑑𝑡
}  𝑖𝑓 0 < 𝑜𝑝𝑡𝑖𝑜𝑛 < 0.25                (15) 

 Create random walk for all ants around elite antlion and antlion selected by roulette wheel. 

  Normalize random walks (Eq.(3)) for elite and selected antlions. 

  Update the ant position. 

𝐴𝑛𝑡𝑖
𝑡 =

𝑅𝐴
𝑟(𝑡𝑛) + 𝑅𝐸

𝑟(𝑡𝑛)

2
, 𝑟(𝑡𝑛): 𝑟𝑎𝑛𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 [0 𝑡𝑛], 

                            𝑛 = 1,2,⋯ ,𝑀𝑎𝑥_𝑖𝑡𝑒𝑟/5                (16) 

  Reposition the ant in case of outside search space. They bring back them inside the search space  

  unlike the original ALO. 

𝐴𝑛𝑡𝑖
𝑡 = 𝑏𝑙𝑜𝑤 + 𝑟𝑎𝑛𝑑 × (𝑏𝑢𝑝 − 𝑏𝑙𝑜𝑤)       

                                                                    𝑖𝑓 (𝐴𝑛𝑡𝑖
𝑡 > 𝑏𝑢𝑝) 𝑜𝑟 (𝐴𝑛𝑡𝑖

𝑡 < 𝑏𝑙𝑜𝑤)                 (17) 

       end for 

       Calculate the fitness values of ants. 

       Compare fitness of ants and antlions. If ant has better fitness than antlion, the antlion position is  

       updated as ant’s position, otherwise antlion keeps its position. 

        𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑖
𝑡 = 𝐴𝑛𝑡𝑖

𝑡     𝑖𝑓 𝑓(𝐴𝑛𝑡𝑖
𝑡) < 𝑓(𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑖

𝑡)                 (18) 

       Update antlions’ positions. 

       Save elite antlion's position and fitness value. 

   end while 
   Return elite antlion 

 

where option in Eqs.(12-15) is chosen variable randomly, 𝑓𝑏𝑒𝑠𝑡 stands for the best fitness, 𝑓𝑤𝑜𝑟𝑠𝑡  denotes the worst 

fitness, 𝑟(𝑡𝑛) is random number in interval [0 𝑡𝑛], n is 20% of the maximum number of iteration, 𝑏𝑙𝑜𝑤  is lower and 

𝑏𝑢𝑝 is upper boundary of the search space. 

 

4.0 QUADRATIC ASSIGNMENT PROBLEM (QAP) 

 

The Quadratic Assignment Problem (QAP) proposed for the first time by Koopmans and Beckman [13].The objective 

of the problem is to make total assignment cost minimum while assigning facilities to locations. We consider that 𝑤𝑖𝑗 

the weight or the flow coefficients between i-th and j-th facilities and 𝑑𝑝𝑞 distance between p-th and q-th locations. 

The objective function of QAP is given below: 

 

𝑚𝑖𝑛 ∑ ∑ 𝑤𝑖𝑗

𝑛

𝑝,𝑞=1

𝑛

𝑖,𝑗=1

𝑑𝑝𝑞𝑥𝑖𝑝𝑥𝑗𝑞

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝑥𝑖𝑗

𝑛

𝑖=1

= 1,

                      ∑𝑥𝑖𝑗

𝑛

𝑗=1

= 1,

𝑥𝑖𝑗 ∈ {0,1}, 1 ≤ 𝑖, 𝑗 ≤ 𝑛

 (19) 

 

In the general form of QAP equation with an order n, there are two matrices: 𝑊 = [𝑤𝑖𝑗] and 𝐷 = [𝑑𝑝𝑞]. 𝑊 matrix 

includes the flow coefficients between the facilities and 𝐷 matrix consists of the distances between all locations. 
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5.0 EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

To evaluate the performance of the IALO algorithm, multi-dimension benchmark tests have been realized with the 

other popular heuristic algorithms, and then the IALO algorithm has been implemented to quadratic assignment 

problem. This problem has been solved by IALO algorithm and its result has been compared with several recent meta-

heuristic algorithms. 

 

5.1 Evaluation Criteria 

 
Algorithms are being analyzed in terms of various metrics with benchmark test functions and compared in terms of 

performance. The mathematical model of these metrics is examined below. 

 

𝛾: 𝑋 ⊆ ℝ𝑛 → Γ                        (20) 

 

where n is the dimension of solution space in search space. Let 𝑥0 ∈ Γ be the solution, 𝛾(𝑥0) = 𝛾0 is considered to be 

the solution of the optimization problem, and 𝛾(�̂�0) = 𝛾0 denotes closeness the solution found. Then, used metrics 

are defined as follows: 

 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 = 1 −
‖𝛾0 − 𝛾0‖

‖𝛾 − 𝛾‖
∈ [0,1] (21) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −
‖𝑥0 − �̂�0‖

‖𝑥 − 𝑥‖
∈ [0,1] 

(22) 

 

𝑀𝑒𝑎𝑛 =
1

𝑁
∑𝛾0

𝑁

𝑖=1

 
(23) 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑆𝑇𝐷) = √
1

𝑁 − 1
∑(𝛾0 −𝑀𝑒𝑎𝑛)

2 (24) 

 

where, 𝛾  and 𝛾 are lower and upper bounds of 𝛾, 𝑥 denotes the lower bound and 𝑥 denotes the upper bound of search 

space [59]. Optimality metric defines the relative closeness of an objective found. Accuracy metric shows the relative 

closeness of the solution found. Mean metric denotes the average of closeness of the solution found. Besides than 

these metrics, this study also used other metrics which are CPU time and number of the function evaluations (NFE), 

to give information about the run time of the algorithm.  

 

5.2 Results and Discussion 

 
5.2.1 Benchmark Test Results 

 
In this study, ALO and IALO algorithms were tested with 10D benchmark test functions and compared with other 

popular and well-known heuristic algorithms. All benchmark test functions have different characteristics. The 

benchmark functions used are given as follows: 

 

F1: Ackley Function 

𝑓(𝑥) = −20. 𝑒𝑥𝑝

(

 −0.2√
1

𝑑
∑𝑥𝑖

2

𝑑

𝑖=1
)

 − 𝑒𝑥𝑝 (
1

𝑑
∑𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑑

𝑖=1

) + 20 + exp(1) 

subject to −35 ≤ 𝑥𝑖 ≤ 35, the global minima is 𝑓(𝑥) = 0 at 𝑥 = (0,⋯ ,0) 

(25) 

F2: Griewank Function 
(26) 
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𝑓(𝑥) =∑
𝑥𝑖
2

4000
−∏𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)

𝑑

𝑖=1

𝑑

𝑖=1

+ 1 

subject to −100 ≤ 𝑥𝑖 ≤ 100, the global minima is 𝑓(𝑥) = 0 at 𝑥 = (0,⋯ ,0) 

F3: Levy Function 

𝑓(𝑥) = 𝑠𝑖𝑛2(𝜋𝑤1) +∑(𝑤𝑖 − 1)
2

𝑑−1

𝑖=1

[1 + 10𝑠𝑖𝑛2(𝜋𝑤𝑖 + 1)] + (𝑤𝑑 − 1)
2[1 + 𝑠𝑖𝑛2(2𝜋𝑤𝑑)] 

𝑤𝑖 = 1 +
𝑥𝑖 − 1

4
, 𝑖 = 1,2,⋯ , 𝑑 

subject to −10 ≤ 𝑥𝑖 ≤ 10, the global minima is 𝑓(𝑥) = 0 at 𝑥 = (1,⋯ ,1) 

(27) 

F4: Rastrigin Function 

𝑓(𝑥) = 10𝑑 +∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑

𝑖=1

 

subject to −5.12 ≤ 𝑥𝑖 ≤ 5.12, the global minima is 𝑓(𝑥) = 0 at 𝑥 = (0,⋯ ,0) 

(28) 

F5: Rosenbrock Function 

𝑓(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (1 − 𝑥𝑖)

2]

𝑑−1

𝑖=1

 

subject to −2.3 ≤ 𝑥𝑖 ≤ 2.3, the global minima is 𝑓(𝑥) = 0 at 𝑥 = (1,⋯ ,1) 

(29) 

F6: Schwefel Function 

𝑓(𝑥) = 418.9829𝑑 −∑𝑥𝑖𝑠𝑖𝑛 (√|𝑥𝑖|)

𝑑

𝑖=1

 

subject to −500 ≤ 𝑥𝑖 ≤ 500, the global minima is 𝑓(𝑥) = 0 at 𝑥 = (420.96,⋯ ,420.96) 

(30) 

F7: Sphere Function 

𝑓(𝑥) =∑𝑥𝑖
2

𝑑

𝑖=1

 

subject to −5.12 ≤ 𝑥𝑖 ≤ 5.12, the global minima is 𝑓(𝑥) = 0 at 𝑥 = (0,⋯ ,0) 

(31) 

F8: Styblinski-Tang Function 

𝑓(𝑥) =
1

2
∑(𝑥𝑖

4 − 16𝑥𝑖
2 + 5𝑥𝑖)

𝑑

𝑖=1

 

subject to −5 ≤ 𝑥𝑖 ≤ 5, the global minima is 𝑓(𝑥) = −39.16 at 𝑥 = (−2.9,⋯ ,−2.9) 

(32) 

F9: Sum Squares Function 

𝑓(𝑥) =∑𝑖𝑥𝑖
2

𝑑

𝑖=1

 

subject to −10 ≤ 𝑥𝑖 ≤ 10, the global minima is 𝑓(𝑥) = 0 at 𝑥 = (0,⋯ ,0) 

 

 

(33) 

F10: Zakharov Function 

𝑓(𝑥) =∑𝑥𝑖
2 + (

1

2
∑𝑖𝑥𝑖

𝑑

𝑖=1

)

2

+

𝑑

𝑖=1

(
1

2
∑𝑖𝑥𝑖

𝑑

𝑖=1

)

4

 

subject to −5 ≤ 𝑥𝑖 ≤ 10, the global minima is 𝑓(𝑥) = 0 at 𝑥 = (0,⋯ ,0) 

(34) 
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Ackley, Griewank, Rastrigin, Levy, Schwefel functions have many local minimum points. Ackley function appears 

to be approximately flat at the edge regions, but there are many local minimum points and a large hole at the center. 

In the Griewank function, there are many local minimum points uniformly distributed on the surface. Rastrigin 

function is a multimodal function, but the local minimum is regularly distributed as it is in Griewank. The Schwefel 

function is a complex function. Rosenbrock function is a valley-shaped unimodal function; convergence is difficult if 

the global minimum is in a narrow place. Sphere and Sum Squares functions are bowl-shaped functions. The sphere 

function is a unimodal function and has a local minimum point as dimension size. The Sum Squares function only has 

a global minimum. Similarly, Zakharov function has only a global minimum and is plate-shaped. 

 

During benchmark works with multi-dimension, the population size is 100, and maximum iteration number is 1000. 

All algorithms have been run 50 times. All codes of heuristic algorithms have been run on PC with Intel(R) Core(TM) 

i7-6500U CPU@2.50GHz/8.00GB RAM. The parameters of algorithms that are used in this study are given in Table 

1. 

 

Table 1: Parameters of meta-heuristic algorithms for benchmark tests 

Algorithm Parameters 

PSO [38] Learning coefficients = 2.05,  

Constriction factor=0.7298 

ABC [60] Number of food sources=50, 

Limit of attempts=100 

SA [61] Temperature=current iteration/maximum iteration number 

DE [62], [63] Crossover probability=0.5,  

Differential weight=0.8, 

Differential strategy=DE/rand/1/bin 

TACO [64] Vaporing=0.1,  

Bit number=18 

ALO [1] Search agent=100 

IALO Search agent=100, random walk size =Max Iter/5 

 

There are two criteria have been used to stop termination: one for reaching the maximum number of iterations, and 

the other for Value To Reach (𝑉𝑇𝑅 = 10−6). VTR condition is given below: 

 

𝑖𝑓 |𝑓𝑏𝑒𝑠𝑡 − 𝑓𝑤𝑜𝑟𝑠𝑡| < 𝑉𝑇𝑅 𝑡ℎ𝑒𝑛 𝑠𝑡𝑜𝑝 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚                  (35) 

where fbest denotes the best fitness value and fworst denotes the worst fitness value in the population. The 3D images 

of the functions, the illustration of the positions of antlions and ants, the random walking of ants, mean fitness of 

antlions, and convergence curve during the optimization are shown in Fig. 3. From these figures, the antlion positions 

are located around the global solution, and the ant positions have been moved along a line or lines in the search space. 

For the problems with smooth surface and many local peaks, holes, random walking was produced differently unlike 

ALO algorithm. For all test functions, the solutions are shown to be reached in the short iteration numbers from the 

last two sub-figures. Tables 2-5 present the 10D benchmark test results for 50 independent runs. To compare their 

performances,  results of seven meta-heuristic algorithms are presented in these tables. Four metrics, such as mean 

best/standard deviation, number of function evaluation (NFE)/CPU time, optimality, accuracy are used to show the 

performance of these algorithms. In terms of the mean best/std.dev., IALO has the best value except for F6 function. 

According to the benchmark results in Table 3, CPU time/NFE results of the IALO algorithm are not the best, but the 

long-running time of the ALO algorithm has been shortened considerably with the proposed innovation on the random 

walkways. In some benchmark test functions, the IALO algorithm has reached an optimal result in 5-20 times less 

time than the original ALO algorithm.  
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Fig. 3: IALO algorithm analysis for all benchmark functions 
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Table 2: Comparison results (Mean Best & Std.Dev.) with 50 independent runs of IALO algorithm, PSO, ABC, SA, 

DE, TACO and ALO algorithms. The best result of each function is emphasized in boldface. 

 Mean Best (Std.Dev.) 

Function PSO ABC SA DE TACO ALO IALO 

FN1 4.37e+0 

(1.03e+0) 

5.17e-10 

(5.25e-10) 

1.51e+1 

(2.19e+0) 

6.18e-7 

(1.29e-7) 

1.52e+1 

(8.74e-1) 

2.29e-1 

(5.51e-1) 

0.00e+0 

(0.00e+0) 

FN2 4.63e-1 

(1.47e-1) 

1.46e-03 

(3.17e-03) 

1.15e+0 

(1.28e-1) 

1.32e-1 

(2.23e-2) 

1.20e+0 

(1.83e-1) 

1.72e-1 

(1.03e-1) 

0.00e+0 

(0.00e+0) 

FN3 3.01e-1 

(3.99e-1) 

6.78e-13 

(2.14e-12) 

2.46e+0 

(9.15e-1) 

1.55e-7 

(4.09e-8) 

1.25e+0 

(1.39e+0) 

3.91e-1 

(5.67e-1) 

1.96e-14 

(1.39e-13) 

FN4 1.50e+1 

(6.95e+0) 

3.89e-14 

(8.03e-14) 

2.42e+1 

(4.36e+0) 

6.18e-1 

(8.82e-1) 

4.56e+1 

(1.06e+1) 

1.61e+1 

(9.94e+0) 

0.00e+0 

(0.00e+0) 

FN5 1.17e+1 

(7.80e+0) 

1.84e-1 

(1.95e-1) 

6.42e+1 

(2.74e+1) 

2.76e+0 

(1.26e-1) 

2.33e+1 

(2.48e+1) 

5.23e+0 

(2.38e+0) 

1.47e-11 

(3.59e-11) 

FN6 1.79e+3 

(2.48e+2) 

1.27e-4 

(2.78e-8) 

8.43e+2 

(1.47e+2) 

1.27e-4 

(5.15e-8) 

1.15e+3 

(2.56e+2) 

1.48e+3 

(6.46e+2) 

8.67e-2 

(2.33e-1) 

FN7 1.15e-1 

(9.84e-2) 

1.46e-12 

(2.39e-12) 

1.86e+0 

(7.27e-1) 

1.63e-7 

(4.79e-8) 

8.49e-2 

(2.87e-1) 

7.71e-9 

(2.38e-9) 

0.00e+0 

(0.00e+0) 

FN8 -3.36e+1 

(2.01e+0) 

-3.92e+1 

(5.37e-15) 

-3.57e+1 

(9.93e-1) 

-3.92e+1 

(4.60e-8) 

-2.99e+1 

(2.03e+0) 

-3.61e+1 

(1.96e+0) 

-3.92e+1 

(1.10e-4) 

FN9 2.31e+0 

(1.68e+0) 

1.57e-12 

(3.59e-12) 

3.17e+1 

(1.44e+1) 

1.62e-7 

(4.37e-8) 

1.66e+0 

(5.23e+0) 

4.85e-8 

(3.69e-8) 

0.00e+0 

(0.00e+0) 

FN10 5.83e+0 

(4.57e+0) 

1.12e+1 

(5.28e+0) 

6.21e+1 

(1.79e+1) 

1.71e-2 

(9.64e-3) 

2.07e+1 

(7.78e+0) 

5.61e-10 

(2.13e-10) 

0.00e+0 

(0.00e+0) 

 

Table 3: Comparison results (NFE & CPU Time) with 50 independent runs of IALO algorithm, PSO, ABC, SA, DE, 

TACO and ALO algorithms. The best result of each function is emphasized in boldface. 

 NFE (CPU Time) 

Function PSO ABC SA DE TACO ALO IALO 

FN1 22320 

(0.773s) 

49835 

(1.823s) 

100000 

(4.322s)  

69516 

(2.423s)  

100000 

(28.620s) 

99258 

(49.307s)  

99078 

(5.994s)  

FN2 21416 

(0.780s) 

50995 

(1.966s) 

100000 

(4.467s)  

100000 

(3.642s)  

100000 

(28.810s)  

95216 

(47.765s)  

76690 

(4.864s)  

FN3 15666 

(0.415s) 

30603 

(0.901s) 

100000 

(3.450s)  

41078 

(1.104s)  

100000 

(27.784s)  

90332 

(45.179s)  

74424 

(3.901s)  

FN4 26154 

(0.931s) 

51001 

(1.929s) 

100000 

(4.416s)  

100000 

(3.605s)  

100000 

(28.920s)  

95322 

(49.060s)  

81860 

(5.213s)  

FN5 19122 

(0.574s) 

51002 

(1.656s) 

100000 

(3.852s) 

100000 

(3.027s)  

100000 

(28.282s)  

99736 

(50.874s)  

81134 

(4.664s)  

FN6 25974 

(0.806s) 

51002 

(1.719s) 

100000 

(3.931s)  

86806 

(2.759s)  

100000 

(28.609s)  

98128 

(50.025s)  

94342 

(5.521s)  

FN7 17272 

(0.354s) 

27681 

(0.638s) 

100000 

(2.824s)  

35722 

(0.742s)  

100000 

(27.966s)  

90298 

(45.319s)  

54526 

(2.541s)  

FN8 17888 

(0.476s) 

44610 

(1.280s) 

100000 

(3.411s)  

44320 

(1.199s)  

73482 

(20.485s)  

90234 

(43.976s)  

76240 

(4.010s)  

FN9 21716 

(0.438s) 

30290 

(0.693s) 

100000 

(2.789s)  

41650 

(0.864s)  

100000 

(27.097s)  

91420 

(43.960s)  

72474 

(3.345s)  

FN10 29684 

(0.652s) 

51002 

(1.273s) 

100000 

(2.999s) 

100000 

(2.229s) 

94824 

(26.025s) 

95200 

(47.859s) 

80588 

(4.001s) 
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Table 4: Comparison results (Optimality) with 50 independent runs of IALO algorithm, PSO, ABC, SA, DE, TACO 

and ALO algorithms. The best result of each function is emphasized in boldface. 

 Optimality 

Function PSO ABC SA DE TACO ALO IALO 

FN1 0.804 1.000 0.325 1.000 0.319 0.990 1.000 

FN2 0.930 1.000 0.827 0.980 0.818 0.974 1.000 

FN3 0.997 1.000 0.974 1.000 0.987 0.996 1.000 

FN4 0.814 1.000 0.699 0.992 0.434 0.801 1.000 

FN5 0.998 1.000 0.989 1.000 0.996 0.999 1.000 

FN6 0.067 1.000 0.497 1.000 0.315 0.117 1.000 

FN7 0.998 1.000 0.964 1.000 0.998 1.000 1.000 

FN8 0.966 1.000 0.979 1.000 0.944 0.982 1.000 

FN9 0.992 1.000 0.894 1.000 0.994 1.000 1.000 

FN10 1.000 1.000 0.999 1.000 1.000 1.000 1.000 

 

Table 5: Comparison results (Accuracy) with 50 independent runs of IALO algorithm, PSO, ABC, SA, DE, TACO 

and ALO algorithms. The best result of each function is emphasized in boldface. 

 Accuracy 

Function PSO ABC SA DE TACO ALO IALO 

FN1 0.989 1.000 0.924 1.000 0.933 1.000 1.000 

FN2 0.974 0.999 0.961 0.987 0.961 0.969 1.000 

FN3 0.986 1.000 0.951 1.000 0.968 0.990 1.000 

FN4 0.931 1.000 0.905 0.998 0.890 0.909 1.000 

FN5 0.797 0.984 0.836 0.900 0.806 0.853 1.000 

FN6 0.625 1.000 0.756 1.000 0.777 0.424 1.000 

FN7 0.992 1.000 0.969 1.000 0.997 1.000 1.000 

FN8 0.857 1.000 0.914 1.000 0.811 0.879 1.000 

FN9 0.990 1.000 0.968 1.000 0.995 1.000 1.000 

FN10 0.964 0.950 0.867 0.998 0.924 1.000 1.000 

 

NFE/CPU time metric results of all meta-heuristic algorithms for each benchmark function are shown in Fig. 4. As 

can be seen from Fig.4b, the worst algorithm is the classic ALO algorithm. Fig. 5 presents the mean best values 

obtained by meta-heuristic algorithms for all benchmark functions. Optimality metric indicates how close to the global 

solution (fitness) and it varies from 0 to 1. Accuracy is a metric that varies between 0-1, indicating how close to the 

global solution points are. In terms of these metrics, the best algorithm is the proposed IALO algorithm. For all 

benchmark test functions, the global fitness values have been found at the global solution points with % 100 success 

by the IALO algorithm. In Fig. 6 and Fig.7, Optimality and Accuracy metric results of IALO algorithm and other 

meta-heuristic algorithms are presented for all benchmarks. The mean of cost value for all benchmark functions are 

shown in Fig.8. These graphics have been given as logarithmic plots in order to understand the comparison results of 

the algorithms better. 

 

  
(a) (b) 

Fig.4: NFE (a) and CPU Time (b) results of meta-heuristic algorithms for benchmark problems 
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Fig. 5: Mean best results of meta-heuristic algorithms for benchmark problems 
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Fig.6: Optimality results of meta-heuristic algorithms for benchmark problems 

 

 
Fig.7: Accuracy results of meta-heuristic algorithms for benchmark problems 

 

(F1)  (F2)  
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(F3)  (F4)  

(F5)  (F6)  

(F7)  (F8)  

(F9)  (F10)  

 

Fig.8: Comparison results of meta-heuristic algorithms on benchmark problems 
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5.2.2 QAP Test Results 

 

In this study, QAP instance was taken from www.yarpiz.com web site [81]. This problem consists the 𝑊[20 × 20] 
weight matrix and 𝐷[20 × 20] distance matrix. This problem includes three different special situations. First, the 19th 

and 20th facilities must be as close as possible, then, the 11th and 16th facilities must be as close as possible. Finally, 

the 1st and 13th facilities must be as far as possible. These three critical states are indicated in the weight matrix as 

follows: 

 

𝑤(19,20) = 𝑤(20,19) = 10000 

𝑤(11,16) = 𝑤(16,11) = 10000 

𝑤(1,13) = 𝑤(13,1) = −10000 

 

The values of this matrix are given in the appendix section. The locations of this QAP instance are shown in Fig. 9. 

There are 40 locations to be used in QAP.  

  
Fig.9: Locations used for quadratic assignment problem 

 

To solve QAP problem, IALO algorithm has been adapted to combinatorial optimization problem. For the example 

used in this study, we identified the problem dimension (𝑁𝑝) as the number of locations. Fig. 10 shows how the 

solution of QAP derive from the antlion's position does. Initially, IALO algorithm randomly produces the positions 

of antlions in the range [0 1]. Then these position values are sorted and index values of the sorted positions are used 

as the locations of facilities in QAP. According to assigned locations of facilities, QAP's total cost value is calculated 

using 𝐷[20 × 20] distance matrix and 𝑊[20 × 20] weight matrix. Pseudo code of how to solve QAP by IALO 

algorithm is given below: 

 

Pseudo code about solving QAP problem by IALO Algorithm: 

 

Input:    weight matrix (W), location vectors (x, y), number of locations, number of facilities, candidate solutions 

produced by IALO.z 

Output: total cost value. 

1) Create facility list from candidate solution produced by IALO 

2) Calculate distance between locations 

for i:number of locations 

 for j=i+1:number of locations 

       calculate distance (i, j) : 𝑑𝑖,𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2 + (𝑦𝑖 − 𝑦𝑗)

2 

       distance (i, j) = distance (j, i) 

  end for 

    end for 

3) Calculate total cost 

     cost = 0 

for i:number of facilities 

 for j=i+1:number of facilities 

       cost = cost +  weight (i, j)*distance(facility(i), facility(j)) 

  end for 

        end for 
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rand(0,1) rand(0,1) rand(0,1) ⋯ rand(0,1) rand(0,1) 

1 2 3 ⋯ 39 40 

 

 

 

 

rand(0,1) rand(0,1) rand(0,1) ⋯ rand(0,1) rand(0,1) 

17 5 33 ⋯ 13 24 

 

 

 

Trial solution 17 5 33 ⋯ 13 24 

 

 

 

 

  

        
 

 

         
 

 

 

 
Fig. 10: Solving QAP with IALO algorithm. 

 

Sort antlion's position (𝑁𝑝 = 40) 

Index of sorted antlion's position 

 

Apply to QAP 

Location Vectors 

(x, y) 
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For QAP tests, the performance of the proposed IALO algorithm was compared with the performances of the original 

ALO algorithm, Genetic Algorithm (GA), Firefly Algorithm (FA), Particle Swarm Optimization (PSO), Invasive 

Weed Optimization (IWO), Imperialist Competitive Algorithm (ICA), Shuffled Frog Leaping Algorithm (SFLA), 

Biogeography-Based Optimization (BBO), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Harmony 

Search Algorithm (HSA), Cultural Optimization Algorithm (COA), Gray Wolf Optimization (GWO), Dragonfly 

Optimization Algorithm (DA), Grasshopper Optimization Algorithm (GOA) and Moth-Flame Optimization (MFO). 

All codes were run on PC with Intel(R) Core(TM) i7-6500U CPU@2.50GHz/8.00GB. For initial candidate solutions 

of these algorithms, same individuals have been used. Each algorithm was run for 10 times with 20 population size 

and 1000 maximum number of iterations. The parameters of meta-heuristic algorithms used for QAP performance 

tests are given in Table 6. The source codes of QAP with the proposed IALO algorithm are publicly available at 

https://github.com/uguryuzgec/QAP-with-IALO.  

 

Table 6: Parameters of meta-heuristic algorithms for QAP tests 

 

Algorithm Parameters Algorithm Parameters 

GA Crossover Coefficient: 0.4 

Mutation Coefficient: 0.8 

Selection Pressure Coefficient: 5 

HSA Number of New Harmonies: 20 

Harmony Memory Consideration Rate: 0.9 

Pitch Adjustment Rate: 0.1 

Fret Width Damp Ratio: 0.995 

PSO Inertia Weight: 1.0 

Inertia Weight Damping Ratio: 0.99 

Personal Learning Coefficient: 1.5 

Global Learning Coefficient: 2.0 

COA Acceptance Ratio: 0.35 

Alpha: 0.3 

  

FA Light Absorption Coefficient: 1.0 

Initial Attraction Coefficient: 2.0 

Mutation Coefficient: 0.2 

Mutation Coefficient Damping R. : 0.98 

GWO Number of Wolfs: 20 

IWO Variance Reduction Exponent: 2 

Initial Value of Standard Deviation: 1 

Final Value of Standard Deviation: 0.001 

Minimum Number of Seeds: 0 

Maximum Number of Seeds: 5 

DA Number of Dragonflies: 20 

ICA Selection Pressure: 1 

Assimilation Coefficient: 2 

Revolution Probability: 0.5 

Revolution Rate: 0.1 

Colonies Mean Cost Coefficient: 0.1 

GOA Number of Grasshoppers: 20 

cMax: 1 

cMin: 0.00004 

SFLA Number of Memeplexes: 5 

Number of Offsprings: 3 

Maximum Number of Iterations: 5  

Step Size: 2 

MFO Number of Moth-Flames: 20 

BBO Keep Rate: 0.2 

Alpha: 0.9 

Mutation Coefficient: 0.1 

ALO Number of Antlions: 20 

CMA-ES Number of Off-springs:  

(4+round(3*log(nVar)))*10 

nVar: number of variables 

IALO Number of Antlions: 20 

 

The results obtained by the IALO and other meta-heuristic algorithms are shown in Fig. 11. These results are presented 

at the end of one-time run. IALO result has the second best cost value as -1078209.911. In the results of all algorithms, 

facility pairs (19-20), (11-16) are shown to be at close locations and facility pairs (1,13) be at far locations from each 

other. The convergence curves of the proposed IALO algorithm and other meta-heuristic algorithms are shown in 

Fig.12.  

 

https://github.com/uguryuzgec/QAP-with-IALO
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Fig. 11: QAP Results obtained by meta-heuristic algorithms,  

(a) GA, (b) PSO, (c) FA, (d) IWO, (e) ICA, (f) SFLA, (g) BBO, (h) CMA-ES.         
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(i) (j) 

  
(k) (l) 

  
(m) (n) 

  
(o) (p) 

Fig. 11: (continued) QAP results obtained by meta-heuristic algorithms, 

 (i) HSA, (j) COA, (k) GWO, (l) DA, (m) GOA, (n) MFO, (o) ALO, (p) IALO.         
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Fig. 12: Comparison result of IALO and other meta-heuristic algorithms for QAP 

 

For QAP, the comparison results with 10 independent runs of IALO and the others are given in Table 7. This consists 

of mean cost, standard deviation, best cost and worst cost values from 10 runs. Based on the results shown in this 

table, the IALO algorithm has the best performance in terms of the mean cost, the standard deviation, and the worst 

cost metrics. The best values are shown bold in this table.  

 

Table 7: The results with 10 runs of IALO and other meta-heuristic algorithms for QAP. 

 

 Mean Cost Standard Dev. Best Cost Worst Cost 

GA -1040715.59 32096.99 -1078899.84 -998807.47 

PSO -1050518.95 48744.72 -1094306.47 -972582.99 

FA -1039310.94 47073.92 -1107239.04 -947424.52 

IWO -1051046.31 32043.56 -1083975.02 -979314.77 

ICA -1049454.60 44573.31 -1094112.34 -966221.62 

SFLA -967258.89 60253.82 -1079771.33 -864700.71 

BBO -778150.82 198348.69 -1042232.90 -458813.87 

CMA-ES -1004125.65 57871.30 -1084741.29 -934860.75 

HSA -973304.68 97905.69 -1084095.47 -787085.25 

COA -815792.62 126273.52 -1079617.77 -691736.94 

GWO -945586.95 106512.14 -1089105.24 -780955.46 

DA -1055131.28 47818.36 -1105279.14 -976083.71 

GOA -997787.67 46922.63 -1093985.84 -928307.57 

MFO -968759.97 110631.05 -1098200.44 -822118.17 

ALO -776989.54 134951.44 -1035716.47 -605587.60 

IALO -1061949.38 19146.89 -1081731.48 -1025641.54 

 

The convergence curves obtained by IALO algorithm for each runs are presented in Fig.13. As can be seen from this 

figure, the IALO algorithm has the most stable results for QAP. Fig. 14 presents the box plot regarding the 

performances of IALO algorithm and other meta-heuristic algorithms for 10 independent runs. This figure shows that 

the worst algorithm is BBO, while FA has the best fitness value (best cost) and the proposed IALO algorithm has the 

best mean cost value. 
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Fig. 13: Convergence curves of IALO algorithm with 10 independent runs  

 

 
Fig. 14: Performances of IALO algorithm and other meta-heuristic algorithms for 10 independent runs  

 

 

6.0 CONCLUSION AND FUTURE WORK 

 
Antlion Optimization (ALO) that imitates the hunting mechanism of antlions has some drawbacks. In this study, the 

improved ALO algorithm which is called IALO was presented. The random walking mechanism and selection 

methods are some of the innovations made in ALO algorithm. The innovations made in the slip rates of the falling 

ants, and other adjustments, reveal the IALO algorithm. As there are no studies on time analysis of ALO algorithm in 

the literature, 10 well known benchmark functions were taken from the literature to show the performance of IALO 
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algorithm according to CPU time and the number of function evaluations (NFE) metrics. The proposed IALO 

algorithm was compared with the other well-known meta-heuristic algorithms using these benchmark functions with 

multi-dimensions. The test results show that the proposed IALO has obtained the best performance in terms of 

different metrics, such as optimality, accuracy, mean best/std. IALO’s run time was reduced by virtue of improvements 

made in the ALO algorithm, but, the best CPU-time results were not obtained in the benchmark tests. However, the 

CPU-time/NFE results show that the run-time of the IALO is much better than the original ALO. 

  

For QAP tests, 15 recent meta-heuristic algorithms (GA, PSO, FA, IWO, ICA, SFLA, BBO, CMA-ES, HSA, COA, 

GWO, DA, GOA, MFO and ALO) were used. QAP results show that the proposed IALO algorithm obtained the best 

performance according to the mean cost, standard deviation and the worst cost except of the best cost. At the end of 

the QAP tests with 10 independent runs, IALO results present the stable convergence curves. This shows that this 

proposed algorithm resolves the QAP in different runs. For the future works, ALO algorithm’s random walking 

mechanism can be improved to a further level, and IALO can be implemented to different real optimization problems, 

such as parallel machine scheduling, optimal robot path planning, capacitated vehicle routing problem, etc. 

 

7.0 APPENDIX A 

 
QAP Matrices 

 

Weight matrix (W) is given below for QAP model used in this study [81]: 

  

 
 

In QAP model, the location vectors (x, y) are given below: 
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